光学学报, 2020, 40 (4): 0429001, 网络出版: 2020-02-11   

金纳米旋转椭球的光吸收和散射特性优化 下载: 1050次

Optimization of Light Absorption and Scattering Properties of Gold Nanospheroids
作者单位
1 新疆师范大学物理与电子工程学院, 新疆 乌鲁木齐 830054
2 新疆师范大学新型光源与微纳光学重点实验室, 新疆 乌鲁木齐 830054
引用该论文

夏伊丁·亚库普, 帕尔哈提江·吐尔孙, 武盼盼. 金纳米旋转椭球的光吸收和散射特性优化[J]. 光学学报, 2020, 40(4): 0429001.

Xiayiding Yakupu, Paerhatijiang Tuersun, Panpan Wu. Optimization of Light Absorption and Scattering Properties of Gold Nanospheroids[J]. Acta Optica Sinica, 2020, 40(4): 0429001.

参考文献

[1] Špringer T, Chadtová Song X, Ermini M L, et al. Functional gold nanoparticles for optical affinity biosensing[J]. Analytical and Bioanalytical Chemistry, 2017, 409(16): 4087-4097.

[2] 梁国海, 邢达. 用于肿瘤光热治疗的有机纳米材料研究进展[J]. 中国激光, 2018, 45(2): 0207020.

    Liang G H, Xing D. Progress in organic nanomaterials for laser-induced photothermal therapy of tumor[J]. Chinese Journal of Lasers, 2018, 45(2): 0207020.

[3] Kaya S I, Kurbanoglu S, Ozkan S A. Nanomaterials-based nanosensors for the simultaneous electrochemical determination of biologically important compounds: ascorbic acid, uric acid, and dopamine[J]. Critical Reviews in Analytical Chemistry, 2019, 49(2): 101-125.

[4] Starowicz Z, Kędra A, Berent K, et al. Influence of Ag nanoparticles microstructure on their optical and plasmonic properties for photovoltaic applications[J]. Solar Energy, 2017, 158: 610-616.

[5] Pan J Y, Chen J, Zhao D W, et al. Surface plasmon-enhanced quantum dot light-emitting diodes by incorporating gold nanoparticles[J]. Optics Express, 2016, 24(2): A33-A43.

[6] 杨东, 聂仲泉, 翟爱平, 等. 径向偏振光激发氧化石墨烯/金纳米棒复合基底的表面增强拉曼散射性能[J]. 光学学报, 2019, 39(6): 0630003.

    Yang D, Nie Z Q, Zhai A P, et al. Surface-enhancedRaman scattering performances of GO/AuNRs composite substrates excited by radially polarized light[J]. Acta Optica Sinica, 2019, 39(6): 0630003.

[7] Xia H W, Gao Y J, Yin L, et al. Light-triggered covalent coupling of gold nanoparticles for photothermal cancer therapy[J]. ChemBio Chem, 2019, 20(5): 667-671.

[8] Suzuka H, Mimura A, Inaoka Y, et al. Magnetic nanoparticles in macrophages and cancer cells exhibit different signal behavior on magnetic particle imaging[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(11): 6857-6865.

[9] Wang H, Zhao R F, Li Y Y, et al. Aspect ratios of gold nanoshell capsules mediated melanoma ablation by synergistic photothermal therapy and chemotherapy[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2016, 12(2): 439-448.

[10] Guan Q Q, Wang C N, Wu D, et al. Cerasome-based gold-nanoshell encapsulating L-menthol for ultrasound contrast imaging and photothermal therapy of cancer[J]. Nanotechnology, 2019, 30(1): 015101.

[11] Coughlin A J, Ananta J S, Deng N F, et al. Gadolinium-conjugated gold nanoshells for multimodal diagnostic imaging and photothermal cancer therapy[J]. Small, 2014, 10(3): 556-565.

[12] Tuersun P, Han X E. Optimal dimensions of gold nanoshells for light backscattering and absorption based applications[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 146: 468-474.

[13] Myroshnychenko V. Rodríguez-FernándezJ, Pastoriza-SantosI, et al. Modelling the optical response of gold nanoparticles[J]. Chemical Society Reviews, 2008, 37(9): 1792-1805.

[14] Khlebtsov N G. T-matrix method in plasmonics: an overview[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 123: 184-217.

[15] Barnes L. Comparing experiment and theory in plasmonics[J]. Journal of Optics A: Pure and Applied Optics, 2009, 11(11): 114002.

[16] McCall S L, Platzman P M, Wolff P A. Surface enhanced Raman scattering[J]. Physics Letters A, 1980, 77(5): 381-383.

[17] Anderson L J E, Mayer K M, Fraleigh R D, et al. Quantitative measurements of individual gold nanoparticle scattering cross sections[J]. The Journal of Physical Chemistry C, 2010, 114(25): 11127-11132.

[18] Mishchenko M I. Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength[J]. Applied Optics, 1993, 32(24): 4652-4666.

[19] Lin A W H, Lewinski N A, West J L, et al. Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells[J]. Journal of Biomedical Optics, 2005, 10(6): 064035.

[20] KreibigU, VollmerM. Optical properties of metal clusters[M]. Berlin: Springer, 1995: 297- 337.

[21] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370-4379.

[22] Elazar J M, et al. Optical properties of metallic films for vertical-cavity optoelectronic devices[J]. Applied Optics, 1998, 37(22): 5271-5283.

[23] Averitt R D, Westcott S L, Halas N J. Linear optical properties of gold nanoshells[J]. Journal of the Optical Society of America B, 1999, 16(10): 1824-1832.

夏伊丁·亚库普, 帕尔哈提江·吐尔孙, 武盼盼. 金纳米旋转椭球的光吸收和散射特性优化[J]. 光学学报, 2020, 40(4): 0429001. Xiayiding Yakupu, Paerhatijiang Tuersun, Panpan Wu. Optimization of Light Absorption and Scattering Properties of Gold Nanospheroids[J]. Acta Optica Sinica, 2020, 40(4): 0429001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!