红外与激光工程, 2018, 47 (1): 0103001, 网络出版: 2018-01-30   

超短脉冲光纤激光相干合成(特邀)

Review on the progress in coherent beam combining of ultra-short fiber lasers(Invited)
作者单位
国防科技大学 光电科学与工程学院, 湖南 长沙 410073
引用该论文

粟荣涛, 周朴, 张鹏飞, 王小林, 马阎星, 马鹏飞. 超短脉冲光纤激光相干合成(特邀)[J]. 红外与激光工程, 2018, 47(1): 0103001.

Su Rongtao, Zhou Pu, Zhang Pengfei, Wang Xiaolin, Ma Yanxing, Ma Pengfei. Review on the progress in coherent beam combining of ultra-short fiber lasers(Invited)[J]. Infrared and Laser Engineering, 2018, 47(1): 0103001.

参考文献

[1] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nat Photonics, 2013, 7(11): 868-874.

[2] Manke G C. Ultrashort pulsed laser technology development program[C]//SPIE, 2014, 9251: 92510O.

[3] Li Ruxin, Leng Yuxin, Xu Zhizhan. Progress in superintense ultrafast lasers and their applications[J]. Physics, 2015, 44(8): 509-517. (in Chinese)

[4] Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Sci Engng, 2015, 3(e3): 1-14.

[5] Li Hongxun, Zhang Rui. Progress of fiber amplification network and its application[J]. Laser & Optoelectronics Progress, 2017, 54(1): 11-22. (in Chinese)

[6] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nat Photonics, 2013, 7(11): 861-867.

[7] Wan P, Yang L, Liu J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Opt Express, 2013, 21(24): 29854-29859.

[8] Hadrich S, Demmler S, Rothhardt J, et al. High-repetition-rate sub-5-fs pulses with 12 GW peak power from fiber-amplifier-pumped optical parametric chirped-pulse amplification[J]. Opt Lett, 2011, 36(3): 313-315.

[9] Eidam T, Rothhardt J, Stutzki F, et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Opt Express, 2011, 19(1): 255-260.

[10] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Opt Commun, 1985, 55(6): 447-449.

[11] Chang W, Zhou T, Siiman L A, et al. Femtosecond pulse spectral synthesis in coherently-spectrally combined multi-channel fiber chirped pulse amplifiers[J]. Opt Express, 2013, 21(3): 3897-3910.

[12] Liu Zejin, Zhou Pu, Wang Xiaolin, et al. The history, development and tend of coherent combining of laser beams[J]. Chin J Laser, 2010, 37(9): 2221-2234. (in Chinese)

[13] Cheng Yong, Liu Yang, Xu Lixin. Recent progress and development of fiber combining technology[J]. Infrared and Laser Engineering, 2007, 36(2): 163-166. (in Chinese)

[14] Lou Qihong, He Bin, Zhou Jun. Fiber lasers and it′s coherent beam combination[J]. Infrared and Laser Engineering, 2007, 36(2): 155-159. (in Chinese)

[15] Su Rongtao, Wang Xiaolin, Zhou Pu, et al. Resent research and development of beam combination of high power pulse fiber laser[J]. Laser & Optoelectronics Progress, 2011, 48(10): 101401. (in Chinese)

[16] Yu Hailong, Wang Xiaolin, Su Rongtao, et al. Advances in high power femtosecond fiber laser systems[J]. Laser & Optoelectronics Progress, 2016, 53(5): 67-85. (in Chinese)

[17] Wang Xiaolin, Zhou Pu, Xu Xiaojun, et al. Techniques of the coherent beam combination of pulse fiber lasers[J]. Laser & Optoelectronics Progress, 2009, 46(5): 13-23. (in Chinese)

[18] Hanna M, Guichard F, Zaouter Y, et al. Coherent combination of ultrafast fiber amplifiers[J]. J Phys B: at Mol Opt Phys, 2016, 49(6): 062004.

[19] Sprangle P, Ting A, Penano J, et al. Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications[J]. IEEE J Sel Top Quantum Electron, 2009, 45(2): 138-148.

[20] Geng C, Zhao B, Zhang E, et al. 1.5 kW incoherent beam combining of four fiber lasers using adaptive fiber-optics collimators[J]. IEEE Photon Technol Lett, 2013, 25(13): 1286-1289.

[21] Zuitlin R, Shamir Y, Sintov Y, et al. Modeling the evolution of spatial beam parameters in parabolic index fibers[J]. Opt Lett, 2012, 37(17): 3636-3638.

[22] Shamir Y, Zuitlin R, Sintov Y, et al. Spatial beam properties of combined lasers′ delivery fibers[J]. Opt Lett, 2012, 37(9): 1412-1414.

[23] Zheng Y, Yang Y, Wang J, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Opt Express, 2016, 24(11): 12063-12071.

[24] Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]//SPIE, 2016, 9730: 97300Y.

[25] Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chin J Laser, 2016, 43(9): 55-61. (in Chinese)

[26] Xu J, Gao H, Peng Q, et al. High-efficient beam combining of polarized high power lasers by time multiplexing technique[J]. IEEE Photon Technol Lett, 2014, 26(3): 261-263.

[27] Wang Xiaolin, Zhou Pu, Su Rongtao, et al. Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chin J Laser, 2017, 44(2): 0201001. (in Chinese)

[28] Manzoni C, Mücke O D, Cirmi G, et al. Coherent pulse synthesis: towards sub-cycle optical waveforms[J]. Laser Photonics Rev, 2015, 9(2): 129-171.

[29] Shelton R K, Ma L, Kapteyn H C, et al. Phase-coherent optical pulse synthesis from separate femtosecond lasers[J]. Science, 2001, 293(5533): 1286-1289.

[30] Zhou P, Liu Z, Xu X, et al. Numerical analysis of the effects of aberrations on coherently combined fiber laser beams[J]. Appl Opt, 2008, 47(18): 3350-3359.

[31] Goodno G D, Shih C, Rothenberg J E. Perturbative analysis of coherent combining efficiency with mismatched lasers[J]. Opt Express, 2010, 18(24): 25403-25414.

[32] Geng C, Luo W, Tan Y, et al. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control[J]. Opt Express, 2013, 21(21): 25045-25055.

[33] Weyrauch T, Vorontsov M, Ovchinnikov V, et al. Atmospheric turbulence compensation and coherent beam combining over a 7 km propagation path using a fiber-array system with 21 sub-apertures[C]//Imaging and Applied Optics, 2014: PW2E.3.

[34] Zhi D, Ma P, Ma Y, et al. Novel adaptive fiber-optics collimator for coherent beam combination[J]. Opt Express, 2014, 22(25): 31520-31528.

[35] Su R, Zhou P, Ma Y, et al. 1.2 kW average power from coherently combined single-frequency nanosecond all-fiber amplifier array[J]. Appl Phys Express, 2013, 6(12): 122702.

[36] Fan X, Liu J, Liu J, et al. Coherent combining of a seven-element hexagonal fiber array[J]. Opt Laser Technol, 2010, 42(2): 274-279.

[37] Brosnan S J, Wichham M G, Komine H. Method and apparatus for optimizing the target intensity distribution transmitted from a fiber coupled array: US Patent, 7283702[P]. 2007-10-16.

[38] Bourderionnet J, Bellanger C, Primot J, et al. Collective coherent phase combining of 64 fibers[J]. Opt Express, 2011, 19(18): 17053-17058.

[39] Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Opt Lett, 2011, 36(14): 2686-2688.

[40] Su R, Zhou P, Wang X, et al. Actively coherent beam combining of two single-frequency 1 083 nm nanosecond fiber amplifiers in low-repetition-rate[J]. IEEE Photon Technol Lett, 2013, 25(15): 1485-1487.

[41] Uberna R, Bratcher A, Alley T G, et al. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide[J]. Opt Express, 2010, 18(13): 13547-13553.

[42] Yang B, Wang X, Ma P, et al. Passive coherent beam combining four channels of nanosecond pulsed laser using all-fiber feedback loop[J]. Chin Phys Lett, 2014, 31(11): 114210.

[43] Ma P F, Zhou P, Su R T, et al. Coherent polarization beam combining of eight fiber lasers using single-frequency dithering technique[J]. Laser Phys Lett, 2012, 9(6): 456-458.

[44] Yang Y, Liu H, Zheng Y, et al. Dammann-grating-based passive phase locking by an all-optical feedback loop[J]. Opt Lett, 2014, 39(3): 708-710.

[45] 刘泽金, 周朴, 马鹏飞, 等. 4路高功率窄线宽、线偏振光纤放大器相干偏振合成实现5 kW 级高亮度激光输出 (简讯)[J]. 中国激光, 2017, 44(4): 0415004.

[46] Müller M, Kienel M, Klenke A, et al. 1 kW 1 mJ eight-channel ultrafast fiber laser[J]. Opt Lett, 2016, 41(15): 3439-3442.

[47] Thielen P A, Ho J G, Burchman D A, et al. Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam[J]. Opt Lett, 2012, 37(18): 3741-3743.

[48] Flores A, Ehrehreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[C]//SPIE, 2016, 9728: 97281Y.

[49] Su Rongtao, Zhou Pu, Wang Xiaolin, et al. Influence of temporal error with different pulse shapes on coherent beam combination system[J]. Acta Phys Sin, 2012, 61(8): 206-211. (in Chinese)

[50] Yu H L, Ma P F, Wang X L, et al. Influence of temporal-spectral effects on ultrafast fiber coherent polarization beam combining system[J]. Laser Phys Lett, 2015, 12(10): 105301.

[51] Su R, Zhou P, Wang X, et al. Impact of temporal and spectral aberrations on coherent beam combination of nanosecond fiber lasers[J]. Appl Opt, 2013, 52(10): 2187-2193.

[52] Klenke A, Seise E, Limpert J, et al. Basic considerations on coherent combining of ultrashort laser pulses[J]. Opt Express, 2011, 19(25): 25379-25387.

[53] Su R, Zhou P, Wang X, et al. Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers[J]. Opt Lett, 2012, 37(4): 497-499.

[54] Su Rongtao, Zhou Pu, Ma Yanxing, et al. Coherent beam combining of two nanosecond fiber pulse lasers[J]. Chinese J Laser, 2012, 39(1): 0102004. (in Chinese)

[55] Yu Hailong. Study on high power femtosecond fiber lasers and their coherent beam combining technology[D]. Changsha: National University of Defense Technology, 2016. (in Chinese)

[56] Weiss S B, Weber M E, Goodno G D. Group delay locking of coherently combined broadband lasers[J]. Opt Lett, 2012, 37(4): 455-457.

[57] Bochove E J, Shakir S A. Analysis of a spatial-filtering passive fiber laser beam combining system[J]. IEEE J Sel Top Quantum Electron, 2009, 15(2): 320-327.

[58] He B, Lou Q, Wang W, et al. Experimental demonstration of phase locking of a two-dimensional fiber laser array using a self-imaging resonator[J]. Appl Phys Lett, 2008, 92(25): 251115.

[59] Li J, Duan K, Wang Y, et al. High-power coherent beam combining of two photonic crystal fiber lasers[J]. IEEE Photon Technol Lett, 2008, 20(11): 888-890.

[60] Huo Y, Cheo P. Analysis of transverse mode competition and selection in multicore fiber lasers[J]. J Opt Soc Am B, 2005, 22(11): 2345-2349.

[61] Michaille L, Bennett C R, Taylor D M, et al. Multicore photonic crystal fiber lasers for high power/energy applications[J]. IEEE J Sel Top Quantum Electron, 2009, 15(2): 328-336.

[62] Chen Z, Hou J, Zhou P, et al. Passive phase locking of an array of four fiber lasers by mutual injection locking[J]. Opt Laser Technol, 2009, 15(4): 333-336.

[63] Fabiny L, Colet P, Poy R. Coherence and phase dynamics of spatially coupled solid-state lasers[J]. Phys Rev A, 1993, 47(5): 4287-4296.

[64] Shardlow P C, Damzen M J. Phase conjugate self-organized coherent beam combination: a passive technique for laser power scaling[J]. Opt Lett, 2010, 35(7): 1082-1084.

[65] Steinhausser B, Brignon A, Lallier E, et al. High energy, single-mode, narrow-linewidth fiber laser source using stimulated Brillouin scattering beam cleanup[J]. Opt Express, 2007, 15(10): 6464-6469.

[66] Kong H J, Yoon J W, Shin J S, et al. Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors[J]. Appl Phys Lett, 2008, 92(2): 021120.

[67] Zhou Jun, He Bing, Xue Yuhao, et al. Study on passive coherent beam combination technology of high power fiber laser arrays[J]. Acta Optica Sinica, 2011, 31(9): 251-259. (in Chinese)

[68] Eckhouse V, Ishaaya A A, Shimshi L, et al. Intracavity coherent addition of 16 laser distributions[J]. Opt Lett, 2006, 31(3): 350-352.

[69] Wang X, Zhou P, Ma H, et al. Synchronization and coherent combining of two pulsed fiber ring lasers based on direct phase modulation[J]. Chin Phys Lett, 2009, 26(5): 054212.

[70] Zhou P, Wang X, Chen Z, et al. Coherent combining of two pulsed fibre lasers in phase modulated mutually coupled fibre laser array[J]. Electron Lett, 2008, 44(21): 20082057.

[71] Zhang C, Chang W, Galvanauskas A, et al. Simultaneous passive coherent beam combining and mode locking of fiber laser arrays[J]. Opt Express, 2012, 20(15): 16245-16257.

[72] Kambayashi Y, Yoshida M, Sasaki T, et al. All-fiber phase-control-free coherent-beam combining toward femtosecond-pulse amplification[J]. Opt Commun, 2017, 382: 556-558.

[73] Kong F, Liu L, Sanders C, et al. Phase locking of nanosecond pulses in a passively Q-switched two-element finer laser array[J]. Appl Phys Lett, 2007, 90(15): 151110.

[74] Michaille L, Taylor D M, Bennett C R, et al. Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area[J]. Opt Lett, 2008, 33(1): 71-73.

[75] Huo Y, Cheo P, King G. Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier[J]. Opt Express, 2004, 12(25): 6230-6239.

[76] Liu H, He B, Zhou J, et al. Coherent beam combination of two nanosecond fiber amplifiers by an all-optical feedback loop[J]. Opt Lett, 2012, 37(18): 3885-3887.

[77] Ji Xiang, Zhou Pu, Wang Xiaolin, et al. Polarized beam coherent combination of pulsed fiber[J]. Acta Phys Sin, 2012, 61(24): 244201. (in Chinese)

[78] Daniault L, Hanna M, Papadopoulos D, et al. Passive coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Opt Lett, 2011, 36(20): 4023-4025.

[79] Zaouter Y, Daniault L, Hanna M, et al. Passive coherent combination of two ultrafast rod type fiber chirped pulse amplifiers[J]. Opt Lett, 2012, 37(9): 1460-1462.

[80] Su R, Zhang Z, Zhou P, et al. Coherent beam combining of a fiber lasers array based on cascaded phase control[J]. IEEE Photon Technol Lett, 2016, 28(22): 2585-2588.

[81] Redmond S M. Active coherent combination of >200 semiconductor amplifiers using a SPGD algorithm[C]// Conference on Lasers and Electro-Optics, 2011: CTuV1.

[82] Su Rongtao, Zhou Pu, Wang Xiaolin, et al. Phase locking of a coherent array of 32 fiber laser[J]. High Power Laser and Particle Beams, 2014, 26(11): 10101. (in Chinese)

[83] Wang X, Leng J, Zhou P, et al. 1.8-kW simultaneous spectral and coherent combining of three-tone nine-channel all-fiber amplifier array[J]. Appl Phys B, 2012, 107(3): 785-790.

[84] Wang X, Zhou P, Ma Y, et al. Active phasing a nine-element 1.14 kW all-fiber two-tone MOPA array using SPGD algorithm[J]. Opt Lett, 2011, 36(16): 3121-3123.

[85] Su R, Zhou P, Wang X, et al. Active coherent beam combining of a five-element, 800 watt nanosecond fiber amplifier array[J]. Opt Lett, 2012, 37(19): 3978-3980.

[86] Hou Jing, Xiao Rui, Liu Zejin, et al. Two methods to realize phase controlling of ytterbium fiber amplifiers[J]. High Power Laser and Particle Beams, 2006, 18(11): 1779-1782. (in Chinese)

[87] Zhou Pu, Ma Yanxing, Wang Xiaolin, et al. Coherent beam combining of fiber amplifiers based on stimulated annealing algorithm[J]. High Power Laser and Particle Beams, 2010, 22(5): 973-977. (in Chinese)

[88] Flores A, Shay T M, Lu C A, et al. Coherent beam combining of fiber amplifiers in a kW regime[C]//Conference on Lasers and Electro-Optics, 2011: CFE3.

[89] Siiman L A, Chang W, Zhou T, et al. Coherent femtosecond pulse combining of multiple parallel chirped pulse fiber amplifiers[J]. Opt Express, 2012, 20(16): 18097-18116.

[90] Huang Z, Tang X, Luo Y, et al. Active phase locking of thirty fiber channels using multilevel phase dithering method[J]. Rev Sci Instrum, 2016, 87: 033109.

[91] 刘泽金, 王小林, 周朴, 等. 9路光纤激光相干合成实现1.56kW高功率输出(简讯)[J]. 中国激光, 2011, 38(7): 0705008.

[92] Ma Y, Wang X, Leng J, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Opt Lett, 2011, 36(6): 951-953.

[93] Ma P, Tao R, Wang X, et al. Coherent polarization beam combination of four mode-locked fiber MOPAs in picosecond regime[J]. Opt Express, 2014, 22(4): 4123-4130.

[94] Shay T M, Benham V, Baker J T, et al. First experimental demonstration of self-synchronous phase locking of an optical array[J]. Opt Express, 2006, 14(25): 12015-12021.

[95] Ma Y, Zhou P, Wang X, et al. Coherent beam combination with single frequency dithering technique[J]. Opt Lett, 2010, 35(9): 1308-1310.

[96] Ma Y, Zhou P, Wang X, et al. Active phase locking of fiber amplifiers using sine-cosine single-frequency dithering technique[J]. Appl Opt, 2011, 50(19): 3330-3336.

[97] Azarian A, Bourdon P, Lombard L, et al. Orthogonal coding methods for increasing the number of multiplexed channels in coherent beam combining[J]. Appl Opt, 2014, 53(8): 1493-1502.

[98] Jiang M, Su R, Zhang Z, et al. Coherent beam combining of fiber lasers using a CDMA-based single-frequency dithering technique[J]. Appl Opt, 2017, 56(15): 4255-4260.

[99] Kansky J E, Yu C X, Murphy D V, et al. Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count[C]//SPIE, 2006, 6306: 63060G.

[100] McNaught S J, Asman C P, Injeyan H, et al. 100-kW coherently combined Nd:YAG MOPA laser array[C]// Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics\& Photonics Technical Digest, 2009: FThD2.

[101] Fan X, Liu J, Liu J, et al. Experimental investigation of a seven-element hexagonal fiber coherent array[J]. Chin Opt Lett, 2010, 8(1): 48-51.

[102] Xiao R, Hou J, Liu M, et al. Coherent combining technology of master oscillator power amplifier fiber arrays[J]. Opt Express, 2008, 16(3): 2015-2022.

[103] Su Rongtao, Zhou Pu, Wang Xiaolin, et al. High-speed high-precision phase controller for coherent beam combining of fiber lasers[J]. High Power Laser and Particle Beams, 2012, 24(6): 1290-1294. (in Chinese)

[104] Su R, Zhou P, Wang X, et al. High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination [Invited][J]. IEEE J Sel Top Quantum Electron, 2014, 20(5): 0903913.

[105] Cui Y, Gao Y, Zhao Z, et al. Spectral phase effects and control requirements of coherent beam combining for ultrashort ultrahigh intensity laser systems[J]. Appl Opt, 2016, 55(35): 10124-10132.

[106] Seise E, Klenke A, Limpert J, et al. Coherent addition of fiber-amplified ultrashort laser pulses[J]. Opt Express, 2010, 18(26): 27827-27835.

[107] Daniault L, Hanna M, Lombard L, et al. Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Opt Lett, 2011, 36(5): 621-623.

[108] Klenke A, Seise E, Demmler S, et al. Coherently-combined two channel femtosecond fiber CPA system producing 3 mJ pulse energy[J]. Opt Express, 2011, 19(24): 24280-24285.

[109] Klenke A, Breitkopf S, Kienel M, et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplificatio system[J]. Opt Lett, 2013, 38(13): 2283-2285.

[110] Yang K, Li W, Shen X, et al. Parallel fiber amplifiers with carrier-envelope drift control for coherent combination of optical frequency combs[J]. Laser Physics, 2014, 24(12): 125101.

[111] Klenke A, Hadrich S, Eidam T, et al. 22 GW peak-power fiber chirped-pulse-amplification system[J]. Opt Lett, 2014, 39(24): 6875-6878.

[112] Ramirez L P, Hanna M, Bouwmans G E R, et al. Coherent beam combining with an ultrafast multicore Yb-doped fiber amplifier[J]. Opt Express, 2015, 23(5): 5406-5416.

[113] Mu J, Li Z, Jing F, et al. Coherent combination of femtosecond pulses via non-collinear cross-correlation and far-field distribution[J]. Opt Lett, 2016, 41(2): 234-237.

[114] Guichard F, Hanna M, Zaouter Y, et al. Analysis of limitations in divided-pulse nonlinear compression and amplification[J]. IEEE J Sel Top Quantum Electron, 2014, 20(5): 619-623.

[115] Kienel M, Klenke A, Eidam T, et al. Analysis of passively combined divided-pulse amplification as an energy-scaling concept[J]. Opt Express, 2013, 21(23): 29031-29042.

[116] Guichard F, Lavenu L, Hanna M, et al. Coherent combining efficiency in strongly saturated divided-pulse amplification systems[J]. Opt Express, 2016, 24(22): 25329-25336.

[117] Zhou S, Wise F W, Ouzounov D G. Divided-pulse amplification of ultrashort pulses[J]. Opt Lett, 2007, 32(7): 871-873.

[118] Lesparre F, Gomes J T, Délen X, et al. Yb:YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique[J]. Opt Lett, 2016, 41(7): 1628-1631.

[119] Stark H, Müller M, Kienel M, et al. Electro-optically controlled divided-pulse amplification[J]. Opt Express, 2017, 25(12): 13494-13503.

[120] Guichard F, Zaouter Y, Hanna M, et al. Energy scaling of a nonlinear compression setup using passive coherent combining[J]. Opt Lett, 2013, 38(21): 4437-4440.

[121] Guichard F, Zaouter Y, Hanna M, et al. High-energy chirped-and divided-pulse Sagnac femtosecond fiber amplifier[J]. Opt Lett, 2015, 40(1): 89-92.

[122] Daniault L, Hanna M, Papadopoulos D N, et al. High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining[J]. Opt Express, 2012, 20(19): 21627-21634.

[123] Mueller M, Kienel M, Klenke A, et al. Phase stabilization of spatiotemporally multiplexed ultrafast amplifiers[J]. Opt Express, 2016, 24(8): 7893-7904.

[124] Kienel M, Müller M, Klenke A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Opt Lett, 2016, 41(14): 3343-3346.

[125] Eidam T, Klenke A, Kienel M, et al. System design for joule-class femtosecond fiber amplifiers for particle acceleration[C]//Conference on Lasers and Electro-Optics, 2014: JTh4L.5.

[126] Kienel M, Müller M, Klenke A, et al. Multidimensional coherent pulse addition of ultrashort laser pulses[J]. Opt Lett, 2015, 40(4): 522-525.

[127] Limpert J, Klenke A, Kienel M, et al. Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses[J]. IEEE J Sel Top Quantum Electron, 2014, 20(5): 1-10.

[128] Kong L J, Zhao L M, Lefrancois S, et al. Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier[J]. Opt Lett, 2012, 37(2): 253-255.

[129] Zaouter Y, Guichard F, Daniault L, et al. Femtosecond fiber chirped-and divided-pulse amplification system[J]. Opt Lett, 2013, 38(2): 106-108.

[130] Kienel M, Klenke A, Eidam T, et al. Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification[J]. Opt Lett, 2014, 39(4): 1049-1052.

[131] Webb B, Azim A, Bodnar N, et al. Divided-pulse amplification to the joule level[J]. Opt Lett, 2016, 41(13): 3106-3109.

[132] Pouysegur J, Weichelt B, Guichard F, et al. Simple Yb:YAG femtosecond booster amplifier using divided-pulse amplification[J]. Opt Express, 2016, 24(9): 9896-9904.

[133] Polzik E S, Kimble H J. Frequency doubling with KNbO3 in an external cavity[J]. Opt Lett, 1991, 16(18): 1400-1402.

[134] Zimmermann C, Vuletic V, Hemmerich A, et al. All solid state laser source for tunable blue and ultraviolet radiation[J]. Appl Phys Lett, 1995, 66(18): 2318-2320.

[135] Han Hainian, Zhang Jinwei, Zhang Qing, et al. Theoretical and experimental study on femtosecond enhancement resonator[J]. Acta Phys Sin, 2012, 61(16): 164206-164206. (in Chinese)

[136] Potma E O, Evans C, Xie X S, et al. Picosecond-pulse amplification with an external passive optical cavity[J]. Opt Lett, 2003, 28(19): 1835-1837.

[137] Jones R J, Moll K D, Thorpe M J, et al. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity[J]. Phys Rev Lett, 2005, 94: 193201.

[138] Pupeza I, Holzberger S, Eidam T, et al. Compact high-repetition-rate source of coherent 100 eV radiation[J]. Nat Photonics, 2013, 7(8): 608-612.

[139] Zhou T, Ruppe J, Zhu C, et al. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers[J]. Opt Express, 2015, 23(6): 7442-7462.

[140] Astrauskas I, Kaksis E, Flary T, et al. High-energy pulse stacking via regenerative pulse-burst amplification[J]. Opt Lett, 2017, 42(11): 2201-2204.

[141] Breitkopf S, Eidam T, Klenke A, et al. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities[J]. Light Sci Appl, 2014, 2(10): e211.

[142] Ruppe J, Chen S, Sheikhsofla M, et al. Multiplexed coherent pulse stacking of 27 Pulses in a 4+1 GTI resonator sequence[C]//Lasers Congress 2016 (ASSL, LSC, LAC), 2016: AM4A.6.

[143] Yang Y, Byrd J, Dawson J, et al. Multicavity coherent pulse stacking using herriott cells[C]//North American Particle Accelerator Conf, 2016: 370-372.

[144] Limpert J. Coherent temporal pulse-stacking approaches for peak-power scaling of ultrafast laser systems[C]//High-Brightness Sources and Light-Driven Interactions, 2016: HM8B.1.

[145] Pei H, Ruppe J, Chen S, et al. Multi-mJ ultrashort pulse coherent pulse stacking amplification in a Yb-doped 85 μm CCC fiber based system[C]//Conference on Lasers and Electro-Optics, 2017: SM1L.2.

[146] Klenke A, Drich S H A, Kienel M, et al. Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression[J]. Opt Lett, 2014, 39(12): 3520-3522.

[147] Drich S H A, Klenke A, Hoffmann A, et al. Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power[J]. Opt Lett, 2013, 38(19): 3866-3869.

[148] Wirth A, Hassan M T, Grgura S I, et al. Synthesized light transients[J]. Science, 2011, 334(6053): 195-200.

[149] Yavuz D D. Toward synthesis of arbitrary optical waveforms[J]. Science, 2011, 331(6021): 1142-1143.

[150] Schibli T R, Kim J, Kuzucu O, et al. Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation[J]. Opt Lett, 2003, 28(11): 947-949.

[151] Tian H, Song Y, Meng F, et al. Long-term stable coherent beam combination of independent femtosecond Yb-fiber lasers[J]. Opt Lett, 2016, 41(22): 5142-5145.

[152] Cox J A, Putnam W P, Sell A, et al. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback[J]. Opt Lett, 2012, 37(17): 3579-3581.

[153] Song Y, Kim C, Jung K, et al. Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime[J]. Opt Express, 2011, 19(15): 14518-14525.

[154] Krauss G, Lohss S, Hanke T, et al. Synthesis of a single cycle of light with compact erbium-doped fibre technology[J]. Nat Photonics, 2010, 4(1): 33-36.

[155] Huang S, Cirmi G, Moses J, et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics[J]. Nat Photonics, 2011, 5(8): 475-479.

[156] Chia S, Cirmi G, Fang S, et al. Two-octave-spanning dispersion-controlled precision optics for sub-optical-cycle waveform synthesizers[J]. Optica, 2014, 1(5): 315-322.

[157] Rigaud P, Kermene V, Bouwmans G, et al. Spatially dispersive amplification in a 12-core fiber and femtosecond pulse synthesis by coherent spectral combining[J]. Opt Express, 2013, 21(11): 13555-13563.

[158] Shverdin M Y, Walker D R, Yavuz D D, et al. Generation of a single-cycle optical pulse[J]. Phys Rev Lett, 2005, 94(3): 033904.

[159] Chan H, Hsieh Z, Liang W, et al. Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics[J]. Science, 2011, 331(6021): 1165-1168.

[160] Guichard F, Hanna M, Lombard L, et al. Two-channel pulse synthesis to overcome gain narrowing in femtosecond fiber amplifiers[J]. Opt Lett, 2013, 38(24): 5430-5433.

[161] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nat Photonics, 2013, 7(4): 258-261.

[162] Bychenkov V Y, Brantov A V. Laser-based ion sources for medical applications[J]. Eur Phys J Special Topics, 2015, 224(13): 2621-2624.

[163] Gales S. Laser driven nuclear science and applications: The need of high efficiency, high power and high repetition rate Laser beams[J]. Eur Phys J Special Topics, 2015, 224(13): 2631-2637.

[164] Moustaizis S D, Lalousis P, Perrakis K, et al. ICAN: high power neutral beam generation[J]. Eur Phys J Special Topics, 2015, 224(13): 2639-2643.

[165] Roth M, Logan B. Advanced space power and propulsion based on lasers[J]. Eur Phys J Special Topics, 2015, 224(13): 2657-2663.

[166] Quinn M N, Jukna V, Ebisuzaki T, et al. Space-based application of the CAN laser to LIDAR and orbital debris remediation[J]. Eur Phys J Special Topics, 2015, 224(13): 2645-2655.

粟荣涛, 周朴, 张鹏飞, 王小林, 马阎星, 马鹏飞. 超短脉冲光纤激光相干合成(特邀)[J]. 红外与激光工程, 2018, 47(1): 0103001. Su Rongtao, Zhou Pu, Zhang Pengfei, Wang Xiaolin, Ma Yanxing, Ma Pengfei. Review on the progress in coherent beam combining of ultra-short fiber lasers(Invited)[J]. Infrared and Laser Engineering, 2018, 47(1): 0103001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!