中国激光, 2018, 45 (2): 0207012, 网络出版: 2018-02-28   

超灵敏原子磁力计在生物磁应用中的研究进展 下载: 2210次特邀综述

Progress in Biomagnetic Signal Measurements with Ultra-Sensitive Atomic Magnetometers
作者单位
1 中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室, 湖北 武汉 430071
2 中国科学院大学, 北京 100049
引用该论文

王晓飞, 孙献平, 赵修超, 朱茂华, 叶朝辉, 周欣. 超灵敏原子磁力计在生物磁应用中的研究进展[J]. 中国激光, 2018, 45(2): 0207012.

Wang Xiaofei, Sun Xianping, Zhao Xiuchao, Zhu Maohua, Ye Chaohui, Zhou Xin. Progress in Biomagnetic Signal Measurements with Ultra-Sensitive Atomic Magnetometers[J]. Chinese Journal of Lasers, 2018, 45(2): 0207012.

参考文献

[1] 窦春江. 临床心电图诊断与应用[M]. 北京: 科学技术文献出版社, 2015: 88- 263.

[2] 杨毅波, 何英泉, 杨继超. 冠心病心律失常的动态心电图与常规心电图应用对比评价[J]. 中国医药科学, 2015, 5(2): 23-25.

    Yang Y B, He Y Q, Yang J C. Comparative study on the diagnostic value of dynamic and conventional electrocardiogram in arrhythmia due to coronary heart disease[J]. China Medicine and Pharmacy, 2015, 5(2): 23-25.

[3] 谭郁玲. 临床脑电图与脑电地形图学[M]. 北京: 人民卫生出版社, 1999: 25- 375.

[4] Baule G. McFee R. Detection of the magnetic field of the heart[J]. American Heart Journal, 1963, 66(1): 95-96.

[5] Cohen D. Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents[J]. Science, 1968, 161(3843): 784-786.

[6] Cohen D, Edelsack E A, Zimmerman J E. Magnetocardiograms taken inside a shielded room with a superconducting point-contact magnetometer[J]. Applied Physics Letters, 1970, 16(7): 278-280.

[7] Cohen D. Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer[J]. Science, 1972, 175(4022): 664-666.

[8] Wikswo J P, Barach J P, Freeman J A. Magnetic field of a nerve impulse: first measurements[J]. Science, 1980, 208(4439): 53-55.

[9] Drung D. High-perforrmance DC SQUID read-out electronics[J]. Physica C: Superconductiveity, 2002, 368(1): 134-140.

[10] Allred J C, Lyman R N, Kornack T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 2002, 89(13): 130801.

[11] Kominis I K, Kornack T W, Allred J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932): 596-599.

[12] Dang H B, Maloof A C, Romalis M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 2010, 97(15): 151110.

[13] Bell W E, Bloom A L. Optically driven spin precession[J]. Physical Review Letters, 1961, 6(6): 280-281.

[14] Liu G B, Li X F, Sun X P, et al. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature[J]. Journal of Magnetic Resonance, 2013, 237(12): 158-162.

[15] Xu S, Rochester S M, Yashchuk V V. et al. Construction and applications of an atomic magnetic gradiometer based on nonlinear magneto-optical rotation[J]. Review of Scientific Instruments, 2006, 77(8): 083106.

[16] Bison G, Wynands R, Weis A. A laser-pumped magnetometer for the mapping of human cardiomagnetic fields[J]. Applied Physics B, 2003, 76(3): 325-328.

[17] Wyllie R, Kauer M W, Wakai R T, et al. Optical magnetometer array for fetal magnetocardiography[J]. Optics Letters, 2012, 37(12): 2247-2249.

[18] Xia H, Baranga B A, Hoffman D, et al. Magnetoencephalography with an atomic magnetometer[J]. Applied Physics Letters, 2006, 89(21): 211104.

[19] Johnson F C N, Schwindt P D, Weisend M. Multi-sensor magnetoencephalography with atomic magnetometers[J]. Physics in Medicine & Biology, 2013, 58(17): 6065-6077.

[20] Seltzer SJ. Developments in alkali-metal atomic magnetometry[D]. Princeton: Princeton University, 2008: 1- 73.

[21] Happer W. Opticalpumping[J]. Review of Modern Physics, 1972, 44(2): 169-249.

[22] VasilakisG. Precision measurements of spin interactions with high density atomic vapors[D]. Princeton: Princeton University, 2011: 23- 25.

[23] Happer W. Wijngaarden W A V. An optical pumping primer[J]. Hyperfine Interactions, 1987, 38(1/2/3/4): 435-470.

[24] Walker T G, Happer W. Spin-exchange optical pumping of noble-gas nuclei[J]. Reviews of Modern Physics, 1997, 69(2): 629-642.

[25] Dehmelt H G. Modulation of a light beam by processing absorbing atoms[J]. Physical Review, 1957, 105(6): 1924-1925.

[26] Budker D, Gawlik W, Kimball D F, et al. Resonant nonlinear magneto-optical effects in atoms[J]. Review of Modern Physics, 2002, 74(4): 1153-1201.

[27] Belfi J, Bevilacqua G, Biancalana V. et al. Cesium coherent population trapping magnetometer for cardiosignal detection in an unshielded environment[J]. Journal of the Optical Society of America B, 2007, 24(9): 2357-2362.

[28] 刘国宾, 孙献平, 顾思洪, 等. 高灵敏度原子磁力计研究进展[J]. 物理, 2012, 41(12): 803-810.

    Liu G B, Sun X P, Gu S H, et al. Progress in high sensitive atomic magnetometer[J]. Physics, 2012, 41(12): 803-810.

[29] Schwindt P D, Lindseth B, Knappe S, et al. Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique[J]. Applied Physics Letters, 2007, 90(8): 081102.

[30] Happer W, Tang H. Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors[J]. Physical Review Letters, 1973, 31(31): 273-276.

[31] Happer W, Tam A C. Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors[J]. Physical Review A, 1977, 16(5): 1877-1891.

[32] Williamson S J, Kaufman L. Biomagnetism[J]. Journal of Magnetism and Magnetic Materials, 1981, 22: 129-201.

[33] Kandori A, Miyashita T, Tsukada K. Cancellation technique of external noise inside a magnetically shielded room used for biomagnetic measurements[J]. Review of Scientific Instruments, 2000, 71(5): 2184-2190.

[34] Kraus RH, Espy MA, MatlachovA, et al. Noise cancellation in magnetoencephalography and electroencephalography with isolated reference sensors: US 7729740[P].2010-06-01.

[35] Seltzer S J, Romalis M V. Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer[J]. Applied Physics Letters, 2004, 85(20): 4804-4806.

[36] Fang J, Wang T, Quan W. et al. In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect[J]. Review of Scientific Instruments, 2014, 85(6): 063108.

[37] Takiya T, Uchiyama T. Development of active shielding-type MI gradiometer and application for magnetocardiography[J]. IEEE Transactions on Magnetics, 2017, 53(11): 4002804.

[38] Khan S, Cohen D. Note: magnetic noise from the inner wall of a magnetically shielded room[J]. Review of Scientific Instruments, 2013, 84(5): 056101.

[39] Lee S K, Romalis M V. Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry[J]. Journal of Applied Physics, 2008, 103(8): 084904.

[40] Mhaskar R, Knappe S, Kitching J. A low-power, high-sensitivity micromachined optical magnetometer[J]. Applied Physics Letters, 2012, 101(24): 241105.

[41] Sheng D, Perry A R, Krzyzewski S P. et al. A microfabricated optically-pumped magnetic gradiometer[J]. Applied Physics Letters, 2017, 110(3): 031106.

[42] Shah V K, Wakai R T. A compact, high performance atomic magnetometer for biomedical applications[J]. Physics in Medicine & Biology, 2013, 58(22): 8153-8161.

[43] Kim K, Begus S, Xia H, et al. Multi-channel atomic magnetometer for magnetoencephalography: a configuration study[J]. Neuroimage, 2014, 89(3): 143-151.

[44] Knappe S, Sander T H, Kosch O. et al. Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications[J]. Applied Physics Letters, 2010, 97(13): 133703.

[45] Wyllie R, Kauer M W, Smetana G S, et al. Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array[J]. Physics in Medicine & Biology, 2012, 57(9): 2619-2632.

[46] Alem O, Sander T H, Mhaskar R. et al. Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers[J]. Physics in Medicine & Biology, 2015, 60(12): 4797-4811.

[47] Eswaran H, Escalona-Vargas D, Bolin E H. et al. Fetal magnetocardiography using optically pumped magnetometers a more adaptable and less expensive alternative[J]. Prenatal Diagnosis, 2017, 37(2): 193-196.

[48] Sander T H, Preusser J, Mhaskar R, et al. Magnetoencephalography with a chip-scale atomic magnetometer[J]. Biomedical Optics Express, 2012, 3(5): 981-990.

[49] Sheng J, Wan S, Sun Y. et al. Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer[J]. Review of Scientific Instruments, 2017, 88(9): 094304.

[50] Boto E, Meyer S S, Shah V. et al. A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers[J]. Neuroimage, 2017, 149: 404-414.

[51] Jensen K, Budvytyte R, Thomas R A, et al. Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity magnetometers[J]. Scientific Reports, 2016, 6: 29638.

[52] Cohen D, Edelsack E A, Zimmerman J E. Magnetocardiograms taken inside a shielded room with a superconducting point-contact magnetometer[J]. Applied Physics Letters, 1970, 16(7): 278-280.

[53] Bison G, Wynands R, Weis A. Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor[J]. Optics Express, 2003, 11(8): 904-909.

[54] Bison G, Castagna N, Hofer A, et al. A room temperature 19-channel magnetic field mapping device for cardiac signals[J]. Applied Physics Letters, 2009, 95(17): 173701.

[55] Kamada K, Ito Y, Kobayashi T. Human MCG measurements with a high-sensitivity potassium atomic magnetometer[J]. Physiological Measurement, 2012, 33(6): 1063-1071.

[56] Stinstra J, Golbach E, Van L P. et al. Multicentre study of fetal cardiac time intervals using magnetocardiography[J]. BJOG: An International Journal of Obstetrics & Gynaecology, 2002, 109(11): 1235-1243.

[57] Baillet S. Magnetoencephalography for brain electrophysiology and imaging[J]. Nature Neuriscience, 2017, 20(3): 327-339.

[58] Hämäläinen M, Hari R, Ilmoniemi R J. et al. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain[J]. Review of Modern Physics, 1993, 65(2): 413-497.

[59] Hari R, Salmelin R. Magnetoencephalography: from SQUIDs to neuroscience. Neuroimage 20th anniversary special edition[J]. Neuroimage, 2012, 61(2): 386-396.

[60] Johnson C. Schwindt P D D, Weisend M. Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer[J]. Applied Physics Letters, 2010, 97(24): 243703.

[61] Alem O, Benison A M, Barth D S. et al. Magnetoencephalography of epilepsy with a microfabricated atomic magnetrode[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 2014, 34(43): 14324-14327.

[62] Kamada K. Sato1 D, Ito Y, et al. Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer[J]. Japanese Journal of Applied Physics, 2015, 54(2): 026601.

[63] Boto E, Bowtell R, Krüger P. et al. On the potential of a new generation of magnetometers for MEG: a beamformer simulation Study[J]. Plos One, 2016, 11(8): 1-24.

[64] 高家红, 孙溢凡, 周欣, 等. 基于原子磁力计的MEG系统及方法技术方案: CN201510507970.5[P].2015-08-18.

[65] Krnjevic K. Some observations on perfused frog sciatic nerves[J]. Journal of Physiology, 1954, 123(2): 338-356.

[66] Wijesinghe R S, Gielen F L, Wikswo J P. Jr. A model for compound action potentials and currents in a nerve bundle III: a comparison of the conduction velocity distributions calculated from compound action currents and potentials[J]. Annals of Biomedical Engineering, 1991, 19(1): 43-72.

[67] Tasaki I. Properties of myelinated fibers in frog sciatic nerve and in spinal cord as examined with micro-electrodes[J]. Japanese Journal of Physiology, 1952, 3(1): 73-94.

[68] Shanes A M. Electrical phenomena in nerve III. Frog sciatic nerve[J]. Journal of Cellular Physiology, 1951, 38(1): 17-40.

[69] Frankenhaeuser B, Hodgkin A L. The after-effects of impulses in the giant nerve fibres of Loligo[J]. Journal of Physiology, 1956, 131(2): 341-376.

[70] Xu S, Yashchuk V V, Donaldson M H. et al. Magnetic resonance imaging with an optical atomic magnetometer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(34): 12668-12671.

王晓飞, 孙献平, 赵修超, 朱茂华, 叶朝辉, 周欣. 超灵敏原子磁力计在生物磁应用中的研究进展[J]. 中国激光, 2018, 45(2): 0207012. Wang Xiaofei, Sun Xianping, Zhao Xiuchao, Zhu Maohua, Ye Chaohui, Zhou Xin. Progress in Biomagnetic Signal Measurements with Ultra-Sensitive Atomic Magnetometers[J]. Chinese Journal of Lasers, 2018, 45(2): 0207012.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!