Chinese Optics Letters, 2021, 19 (4): 041404, Published Online: Feb. 4, 2021  

Speckle characteristics of simulated deep Fresnel region under shadowing effect Download: 577次

Author Affiliations
School of Science, Shandong Jianzhu University, Jinan 250101, China
Copy Citation Text

Zengshun Jiang, Xingqi An, Yuqin Zhang, Xuan Liu, Xifeng Qin, Yanjie Zhao, Huilin Wang, Guiyuan Liu, Hongsheng Song. Speckle characteristics of simulated deep Fresnel region under shadowing effect[J]. Chinese Optics Letters, 2021, 19(4): 041404.

References

[1] J. C. Dainty, A. H. Greenaway. Estimation of spatial power spectra in speckle interferometry. J. Opt. Soc. Am., 1979, 69: 786.

[2] GoodmanJ. W., Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).

[3] Y. Zhao, H. Zhang. Displacement measurement method based on laser self-mixing interference in the presence of speckle. Chin. Opt. Lett., 2020, 18: 051201.

[4] P. Li, P. Cai, J. Long, C. Liu, H. Yan. Measurement of out-of-plane deformation of curved objects with digital speckle pattern interferometry. Chin. Opt. Lett., 2018, 16: 111202.

[5] Q. Wang. A new method of studying the statistical properties of speckle phase. Chin. Opt. Lett., 2009, 7: 5.

[6] B. G. Smith. Geometrical shadowing of a random rough surface. IEEE Trans. Antenn. Propag., 1967, 15: 668.

[7] C. Bourlier, G. Berginc, J. Saillard. Theoretical study on two-dimensional Gaussian rough sea surface emission and reflection on the infrared frequencies with shadowing effect. IEEE Trans. Geosci. Remote Sens., 2001, 39: 379.

[8] L. Sun, S. Tang, F. Zhao. An algorithm of computing 3D geometric attenuation factor. Opt. Express, 2019, 27: 2056.

[9] H. Fuji, T. Asakura, Y. Shindo. Measurement of surface roughness properties by means of laser speckle techniques. Opt. Commun., 1976, 16: 68.

[10] L. Novotny, C. Hafner. Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys. Rev. E, 1994, 50: 4094.

[11] D. Van Labeke, D. Barchiesi. Probes for scanning tunneling optical microscopy: a theoretical comparison. J. Opt. Soc. Am. A, 1993, 10: 2193.

[12] J. L. Kann, T. D. Milster, F. F. Froehlich, R. W. Ziolkowski, J. B. Judkins. Linear behavior of a near-field optical scanning system. J. Opt. Soc. Am. A, 1995, 12: 1677.

[13] C. Cheng, C. Liu, X. Ren, M. Liu, S. Teng, Z. Xu. Near-field speckles produced by random self-affine surfaces and their contrast transitions. Opt. Lett., 2003, 28: 1531.

[14] J. A. Ogilvy. Theory of wave scattering from random rough surfaces. J. Acoust. Soc. Am., 1991, 90: 3382.

[15] DaintyJ. C., Laser Speckle and Related Phenomena (Springer-Verlag Berlin, 1984).

[16] S. Teng, C. Cheng, M. Liu, W. Gui, Z. Xu. The autocorrelation of speckles in deep Fresnel diffraction region and characterizations of random self-affine fractal surfaces. Chin. Phys. Soc., 2005, 14: 1990.

Zengshun Jiang, Xingqi An, Yuqin Zhang, Xuan Liu, Xifeng Qin, Yanjie Zhao, Huilin Wang, Guiyuan Liu, Hongsheng Song. Speckle characteristics of simulated deep Fresnel region under shadowing effect[J]. Chinese Optics Letters, 2021, 19(4): 041404.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!