Photonics Research, 2020, 8 (11): 11000A72, Published Online: Oct. 30, 2020   

Cavity engineering of two-dimensional perovskites and inherent light-matter interaction Download: 890次

Author Affiliations
1 CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
4 School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Copy Citation Text

Shuai Zhang, Yangguang Zhong, Fan Yang, Qinxuan Cao, Wenna Du, Jianwei Shi, Xinfeng Liu. Cavity engineering of two-dimensional perovskites and inherent light-matter interaction[J]. Photonics Research, 2020, 8(11): 11000A72.

References

[1] PurcellE. M., “Spontaneous emission probabilities at radio frequencies,” in Confined Electrons and Photons (Springer, 1995), p. 839.

[2] LagoudakisK., The Physics of Exciton-Polariton Condensates (PPUR Polytechniques, 2013).

[3] D. Sanvitto, S. Kéna-Cohen. The road towards polaritonic devices. Nat. Mater., 2016, 15: 1061-1073.

[4] Z. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. A. M. van Hest, K. Zhu. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater., 2018, 3: 18017.

[5] H. Wang, D. H. Kim. Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev., 2017, 46: 5204-5236.

[6] L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, E. H. Sargent. Perovskites for next-generation optical sources. Chem. Rev., 2019, 119: 7444-7477.

[7] M. A. Green, A. Ho-Baillie, H. J. Snaith. The emergence of perovskite solar cells. Nat. Photonics, 2014, 8: 506-514.

[8] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang. Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347: 967-970.

[9] K. X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang, K. Zhu, J. J. Berry. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett., 2016, 1: 360-366.

[10] B. R. Sutherland, E. H. Sargent. Perovskite photonic sources. Nat. Photonics, 2016, 10: 295-302.

[11] D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, M. G. Kanatzidis. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc., 2015, 137: 7843-7850.

[12] C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, M. G. Kanatzidis. Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc. Natl. Acad. Sci. USA, 2019, 116: 58-66.

[13] J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, A. D. Mohite. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun., 2018, 9: 2254.

[14] S. Deng, E. Shi, L. Yuan, L. Jin, L. Dou, L. Huang. Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites. Nat. Commun., 2020, 11: 664.

[15] Q. Ou, X. Bao, Y. Zhang, H. Shao, G. Xing, X. Li, L. Shao, Q. Bao. Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications. Nano Mater. Sci., 2019, 1: 268-287.

[16] V. Ardizzone, L. De Marco, M. De Giorgi, L. Dominici, D. Ballarini, D. Sanvitto. Emerging 2D materials for room-temperature polaritonics. Nanophotonics, 2019, 8: 1547-1558.

[17] W. Zhai, C. Tian, K. Yuan, C. Ge, S. Zhao, H. Yu, Y. Li, W. Chen, G. Ran. Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature. Appl. Phys. Lett., 2019, 114: 131107.

[18] Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu, J. Shi, Y. Zhong, J. Chen, Y. Gao, M. Li. Lasing from mechanically exfoliated 2D homologous Ruddlesden-Popper perovskite engineered by inorganic layer thickness. Adv. Mater., 2019, 31: 1903030.

[19] C. Lan, Z. Zhou, R. Wei, J. C. Ho. Two-dimensional perovskite materials: from synthesis to energy-related applications. Mater. Today Energy, 2019, 11: 61-82.

[20] S. Roy, A. S. Sharbirin, Y. Lee, W. B. Kim, T. S. Kim, K. Cho, K. Kang, H. S. Jung, J. Kim. Measurement of quantum yields of monolayer TMDs using dye-dispersed PMMA thin films. Nanomaterials, 2020, 10: 1032.

[21] X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V. L. Colvin, W. W. Yu, Y. Zhang. Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications. Adv. Sci., 2019, 6: 1900941.

[22] Y.-H. Chang, J.-C. Lin, Y.-C. Chen, T.-R. Kuo, D.-Y. Wang. Facile synthesis of two-dimensional Ruddlesden-Popper perovskite quantum dots with fine-tunable optical properties. Nanoscale Res. Lett., 2018, 13: 247.

[23] M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, E. H. Sargent. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol., 2016, 11: 872-877.

[24] Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li, Y. Xia, Y. Chen, W. Huang. Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application. J. Mater. Chem. A, 2019, 7: 13860-13872.

[25] H. Li, T. Luo, S. Zhang, Z. Sun, X. He, W. Zhang, H. Chang. Two‐dimensional metal‐halide perovskite‐based optoelectronics: synthesis, structure, properties and applications. Energy Environ. Mater., 2020.

[26] X. Han, Y. Zheng, S. Chai, S. Chen, J. Xu. 2D organic-inorganic hybrid perovskite materials for nonlinear optics. Nanophotonics, 2020, 9: 38.

[27] J. Yan, W. Qiu, G. Wu, P. Heremans, H. Chen. Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells. J. Mater. Chem. A, 2018, 6: 11063-11077.

[28] D. Ramirez, J. I. Uribe, L. Francaviglia, P. Romero-Gomez, A. F. I. Morral, F. Jaramillo. Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10thin films. J. Mater. Chem. C, 2018, 6: 6216-6221.

[29] T. Schmidt, K. Lischka, W. Zulehner. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B, 1992, 45: 8989-8994.

[30] H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang. Exciton localization in solution-processed organolead trihalide perovskites. Nat. Commun., 2016, 7: 10896.

[31] M.-G. La-Placa, G. Longo, A. Babaei, L. Martínez-Sarti, M. Sessolo, H. J. Bolink. Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control. Chem. Commun., 2017, 53: 8707-8710.

[32] W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, X. Hu. Resolving the optical anisotropy of low-symmetry 2D materials. Nanoscale, 2018, 10: 8329-8337.

[33] A. Fieramosca, L. De Marco, M. Passoni, L. Polimeno, A. Rizzo, B. L. Rosa, G. Cruciani, L. Dominici, M. De Giorgi, G. Gigli. Tunable out-of-plane excitons in 2D single-crystal perovskites. ACS Photon., 2018, 5: 4179-4185.

[34] R. A. DeCrescent, N. R. Venkatesan, C. J. Dahlman, R. M. Kennard, M. L. Chabinyc, J. A. Schuller. Optical constants and effective-medium origins of large optical anisotropies in layered hybrid organic/inorganic perovskites. ACS Nano, 2019, 13: 10745-10753.

[35] Z. Guo, X. Wu, T. Zhu, X. Zhu, L. Huang. Electron-phonon scattering in atomically thin 2D perovskites. ACS Nano, 2016, 10: 9992-9998.

[36] S. Neutzner, F. Thouin, D. Cortecchia, A. Petrozza, C. Silva, A. R. S. Kandada. Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites. Phys. Rev. Mater., 2018, 2: 064605.

[37] J. Nishida, J. P. Breen, K. P. Lindquist, D. Umeyama, H. I. Karunadasa, M. D. Fayer. Dynamically disordered lattice in a layered Pb-I-SCN perovskite thin film probed by two-dimensional infrared spectroscopy. J. Am. Chem. Soc., 2018, 140: 9882-9890.

[38] L. Ni, U. Huynh, A. Cheminal, T. H. Thomas, R. Shivanna, T. F. Hinrichsen, S. Ahmad, A. Sadhanala, A. Rao. Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells. ACS Nano, 2017, 11: 10834-10843.

[39] D. B. Straus, S. Hurtado Parra, N. Iotov, J. Gebhardt, A. M. Rappe, J. E. Subotnik, J. M. Kikkawa, C. R. Kagan. Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites. J. Am. Chem. Soc., 2016, 138: 13798-13801.

[40] F. Thouin, D. A. Valverde-Chávez, C. Quarti, D. Cortecchia, I. Bargigia, D. Beljonne, A. Petrozza, C. Silva, A. R. S. Kandada. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater., 2019, 18: 349-356.

[41] P. Guo, C. C. Stoumpos, L. Mao, S. Sadasivam, J. B. Ketterson, P. Darancet, M. G. Kanatzidis, R. D. Schaller. Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites. Nat. Commun., 2018, 9: 2019.

[42] X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, O. Bushuyev. Electron-phonon interaction in efficient perovskite blue emitters. Nat. Mater., 2018, 17: 550-556.

[43] M. D. Smith, A. Jaffe, E. R. Dohner, A. M. Lindenberg, H. I. Karunadasa. Structural origins of broadband emission from layered Pb-Br hybrid perovskites. Chem. Sci., 2017, 8: 4497-4504.

[44] D. Cortecchia, S. Neutzner, A. R. Srimath Kandada, E. Mosconi, D. Meggiolaro, F. De Angelis, C. Soci, A. Petrozza. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation. J. Am. Chem. Soc., 2017, 139: 39-42.

[45] T. Hu, M. D. Smith, E. R. Dohner, M.-J. Sher, X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X.-Y. Zhu, H. I. Karunadasa. Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites. J. Phys. Chem. Lett., 2016, 7: 2258-2263.

[46] D. O’carroll, I. Lieberwirth, G. Redmond. Microcavity effects and optically pumped lasing in single conjugated polymer nanowires. Nat. Nanotechnol., 2007, 2: 180-184.

[47] H. H. Fang, R. Ding, S. Y. Lu, Y. D. Yang, Q. D. Chen, J. Feng, Y. Z. Huang, H. B. Sun. Whispering‐gallery mode lasing from patterned molecular single‐crystalline microcavity array. Laser Photon. Rev., 2013, 7: 281-288.

[48] NodaS.MahiF. T.ZappeH., “Photonic crystals,” in Reference Module in Materials Science and Materials Engineering (Elsevier, 2016), pp. 111.

[49] G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. V. Kavokin, M. R. Vladimirova, M. Kaliteevski. Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities. Phys. Solid State, 1999, 41: 1223-1238.

[50] Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, S. Liu. Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors. Nat. Commun., 2018, 9: 5302.

[51] Y. Zhang, Y. Liu, Z. Xu, H. Ye, Q. Li, M. Hu, Z. Yang, S. Liu. Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector. J. Mater. Chem. C, 2019, 7: 1584-1591.

[52] Y. Hassan, Y. Song, R. D. Pensack, A. I. Abdelrahman, Y. Kobayashi, M. A. Winnik, G. D. Scholes. Structure‐tuned lead halide perovskite nanocrystals. Adv. Mater., 2016, 28: 566-573.

[53] D. Ghoshal, T. Wang, H. Z. Tsai, S. W. Chang, M. Crommie, N. Koratkar, S. F. Shi. Catalyst‐free and morphology‐controlled growth of 2D perovskite nanowires for polarized light detection. Adv. Opt. Mater., 2019, 7: 1900039.

[54] A. Kooijman, L. A. Muscarella, R. M. Williams. Perovskite thin film materials stabilized and enhanced by zinc (II) doping. Appl. Sci., 2019, 9: 1678.

[55] S. Wang, F. Yang, J. Zhu, Q. Cao, Y. Zhong, A. Wang, W. Du, X. Liu. Growth of metal halide perovskite materials. Sci. China Mater., 2020, 63: 1438-1463.

[56] X. Zhang, H. Shi, H. Dai, X. Zhang, X. W. Sun, Z. Zhang. Exciton-polariton properties in planar microcavity of millimeter-sized two-dimensional perovskite sheet. ACS Appl. Mater. Interfaces, 2020, 12: 5081-5089.

[57] C. M. Raghavan, T.-P. Chen, S.-S. Li, W.-L. Chen, C.-Y. Lo, Y.-M. Liao, G. Haider, C.-C. Lin, C.-C. Chen, R. Sankar. Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals. Nano Lett., 2018, 18: 3221-3228.

[58] A. Brehier, R. Parashkov, J. S. Lauret, E. Deleporte. Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors. Appl. Phys. Lett., 2006, 89: 171110.

[59] Z. Han, H.-S. Nguyen, F. Boitier, Y. Wei, K. Abdel-Baki, J.-S. Lauret, J. Bloch, S. Bouchoule, E. Deleporte. High-Q planar organic-inorganic perovskite-based microcavity. Opt. Lett., 2012, 37: 5061-5063.

[60] J. Wang, R. Su, J. Xing, D. Bao, C. Diederichs, S. Liu, T. C. Liew, Z. Chen, Q. Xiong. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite. ACS Nano, 2018, 12: 8382-8389.

[61] H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao, P. Liu, M. Li, J. Yao, H. Fu. 2D Ruddlesden-Popper perovskites microring laser array. Adv. Mater., 2018, 30: 1706186.

[62] N. H. M. Dang, D. Gerace, E. Drouard, G. Trippé-Allard, F. Lédée, R. Mazurczyk, E. Deleporte, C. Seassal, H. S. Nguyen. Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces. Nano Lett., 2020, 20: 2113-2119.

[63] H. Dong, C. Zhang, X. Liu, J. Yao, Y. S. Zhao. Materials chemistry and engineering in metal halide perovskite lasers. Chem. Soc. Rev., 2020, 49: 951-982.

[64] C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, M. G. Kanatzidis. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater., 2016, 28: 2852-2867.

[65] K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, Z. Chen. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater., 2018, 17: 908-914.

[66] K. Tanaka, T. Kondo. Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals. Sci. Technol. Adv. Mater., 2003, 4: 599-604.

[67] T. Dammak, S. Elleuch, H. Bougzhala, A. Mlayah, R. Chtourou, Y. Abid. Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C4H9NH3)4Pb3I4Br6. J. Lumin., 2009, 129: 893-897.

[68] L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, P. Yang. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349: 1518-1521.

[69] E. Shi, B. Yuan, S. B. Shiring, Y. Gao, , Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, L. Dou. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature, 2020, 580: 614-620.

[70] D. Ma, Y. Fu, L. Dang, J. Zhai, I. A. Guzei, S. Jin. Single-crystal microplates of two-dimensional organic-inorganic lead halide layered perovskites for optoelectronics. Nano Res., 2017, 10: 2117-2129.

[71] W. Niu, L. A. Ibbotson, D. Leipold, E. Runge, G. V. Prakash, J. J. Baumberg. Image excitons and plasmon-exciton strong coupling in two-dimensional perovskite semiconductors. Phys. Rev. B, 2015, 91: 161303.

[72] F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, S. Brovelli. Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics, 2014, 8: 392-399.

[73] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 2015, 15: 3692-3696.

[74] L.-C. Chen, C.-H. Tien, Z.-L. Tseng, Y.-S. Dong, S. Yang. Influence of PMMA on all-inorganic halide perovskite CsPbBr3 quantum dots combined with polymer matrix. Materials, 2019, 12: 985.

[75] L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, H. Zhong. Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots. J. Phys. Chem. Lett., 2019, 10: 3248-3253.

[76] H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, S. Tretiak. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536: 312-316.

[77] H. Zhang, Y. Wu, Q. Liao, Z. Zhang, Y. Liu, Q. Gao, P. Liu, M. Li, J. Yao, H. Fu. A two‐dimensional Ruddlesden-Popper perovskite nanowire laser array based on ultrafast light‐harvesting quantum wells. Angew. Chem., 2018, 130: 7874-7878.

[78] D. I. Babic, S. W. Corzine. Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE J. Quantum Electron., 1992, 28: 514-524.

[79] ChoyH. K. H., Design and Fabrication of Distributed Bragg Reflectors for Vertical-Cavity Surface-Emitting Lasers (Massachusetts Institute of Technology, 1998).

[80] A. Brehier, R. Parashkov, J.-S. Lauret, E. Deleporte. Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors. Appl. Phys. Lett., 2006, 89: 171110.

[81] G. Lanty, A. Brehier, R. Parashkov, J.-S. Lauret, E. Deleporte. Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds. New J. Phys., 2008, 10: 065007.

[82] C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 1992, 69: 3314-3317.

[83] M. Brodin, M. Matsko. Polariton effects in luminescence from ZnTe crystals: surface and bulk polaritons. Solid State Commun., 1980, 35: 375-377.

[84] R. André, D. Heger, L. S. Dang, Y. M. d’Aubigné. Spectroscopy of polaritons in CdTe-based microcavities. J. Cryst. Growth, 1998, 184: 758-762.

[85] H. Mathieu, Y. Chen, J. Camassel, J. Allegre, D. Robertson. Excitons and polaritons in InP. Phys. Rev. B, 1985, 32: 4042-4051.

[86] G. Malpuech, A. Di Carlo, A. Kavokin, J. J. Baumberg, M. Zamfirescu, P. Lugli. Room-temperature polariton lasers based on GaN microcavities. Appl. Phys. Lett., 2002, 81: 412-414.

[87] Y.-Y. Lai, Y.-P. Lan, T.-C. Lu. Strong light-matter interaction in ZnO microcavities. Light Sci. Appl., 2013, 2: e76.

[88] SongJ.-H., “Optical properties of GaN and ZnO,” in Oxide and Nitride Semiconductors: Processing, Properties, and Applications, YaoT.HongS.-K., eds. (Springer, 2009), pp. 311354.

[89] M. Litinskaya. Exciton polariton kinematic interaction in crystalline organic microcavities. Phys. Rev. B, 2008, 77: 155325.

[90] Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, P. N. Prasad. Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys. Rep., 2019, 795: 1-51.

[91] S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, X. Liu. Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires. Adv. Opt. Mater., 2018, 6: 1701032.

[92] W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, X. Liu. Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photon., 2018, 5: 2051-2059.

[93] Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, Z. Wang. Transition between exciton-polariton and coherent photonic lasing in all-inorganic perovskite microcuboid. ACS Photon., 2020, 7: 454-462.

[94] Q. Shang, C. Li, S. Zhang, Y. Liang, Z. Liu, X. Liu, Q. Zhang. Enhanced optical absorption and slowed light of reduced-dimensional CsPbBr3 nanowire crystal by exciton-polariton. Nano Lett., 2020, 20: 1023-1032.

[95] R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, Q. Xiong. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett., 2017, 17: 3982-3988.

[96] S. Zhang, J. Chen, J. Shi, L. Fu, W. Du, X. Sui, Y. Mi, Z. Jia, F. Liu, J. Shi. Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity. ACS Photon., 2020, 7: 327-337.

[97] W. Du, S. Zhang, Q. Zhang, X. Liu. Recent progress of strong exciton-photon coupling in lead halide perovskites. Adv. Mater., 2019, 31: 1804894.

[98] T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, X. Y. Zhu. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv. Opt. Mater., 2018, 6: 1700982.

[99] Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, Q. Zhang. Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser. Nano Lett., 2020, 20: 6636-6646.

[100] T. Fujita, Y. Sato, T. Kuitani, T. Ishihara. Tunable polariton absorption of distributed feedback microcavities at room temperature. Phys. Rev. B, 1998, 57: 12428-12434.

[101] K. Pradeesh, J. Baumberg, G. V. Prakash. Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity. Opt. Express, 2009, 17: 22171-22178.

[102] A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, D. Gerace. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv., 2019, 5: eaav9967.

[103] P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, D. N. Krizhanovskii. Ultra-low-power hybrid light-matter solitons. Nat. Commun., 2015, 6: 8317.

[104] L. K. Van Vugt, B. Piccione, R. Agarwal. Incorporating polaritonic effects in semiconductor nanowire waveguide dispersion. Appl. Phys. Lett., 2010, 97: 061115.

[105] M. Vladimirova, S. Cronenberger, D. Scalbert, K. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, A. Kavokin. Polariton-polariton interaction constants in microcavities. Phys. Rev. B, 2010, 82: 075301.

[106] L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, D. Sanvitto. Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites. Adv. Opt. Mater., 2020, 8: 2000176.

[107] J. Chen, W. Du, J. Shi, M. Li, Y. Wang, Q. Zhang, X. Liu. Perovskite quantum dot lasers. InfoMat, 2020, 2: 170-183.

[108] Y. Mi, Y. Zhong, Q. Zhang, X. Liu. Continuous‐wave pumped perovskite lasers. Adv. Opt. Mater., 2019, 7: 1900544.

[109] Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S. T. Ha, Q. Xiong. Advances in small perovskite‐based lasers. Small Methods, 2017, 1: 1700163.

[110] C. Li, Z. Liu, Q. Shang, Q. Zhang. Surface‐plasmon‐assisted metal halide perovskite small lasers. Adv. Opt. Mater., 2019, 7: 1900279.

[111] G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, T. C. Sum. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater., 2014, 13: 476-480.

[112] T. Kondo, T. Azuma, T. Yuasa, R. Ito. Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun., 1998, 105: 253-255.

[113] G. Grancini, M. K. Nazeeruddin. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater., 2019, 4: 4-22.

[114] M. Saba, F. Quochi, A. Mura, G. Bongiovanni. Excited state properties of hybrid perovskites. Acc. Chem. Res., 2016, 49: 166-173.

[115] M. N. Saha, A. Fowler. On a physical theory of stellar spectra. Proc. R. Soc. London Series A, 1921, 99: 135-153.

[116] J. S. Manser, J. A. Christians, P. V. Kamat. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev., 2016, 116: 12956-13008.

[117] M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann. Correlated electron-hole plasma in organometal perovskites. Nat. Commun., 2014, 5: 5049.

[118] A. P. Schlaus, M. S. Spencer, X. Zhu. Light-matter interaction and lasing in lead halide perovskites. Acc. Chem. Res., 2019, 52: 2950-2959.

[119] W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, X. Liu. Unveiling lasing mechanism in CsPbBr3 microsphere cavities. Nanoscale, 2019, 11: 3145-3153.

[120] D. Marongiu, M. Saba, F. Quochi, A. Mura, G. Bongiovanni. The role of excitons in 3D and 2D lead halide perovskites. J. Mater. Chem. C, 2019, 7: 12006-12018.

[121] M. Li, Q. Gao, P. Liu, Q. Liao, H. Zhang, J. Yao, W. Hu, Y. Wu, H. Fu. Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites. Adv. Func. Mater., 2018, 28: 1707006.

[122] B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. Wong, E. H. Sargent. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano, 2014, 8: 10947-10952.

[123] W. K. Chong, K. Thirumal, D. Giovanni, T. W. Goh, X. Liu, N. Mathews, S. Mhaisalkar, T. C. Sum. Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films. Phys. Chem. Chem. Phys., 2016, 18: 14701-14708.

[124] Z. Liu. Research progress of low-dimensional metal halide perovskites for lasing applications. Chin. Phys. B, 2018, 27: 114209.

[125] G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum, W. Huang. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun., 2017, 8: 14558.

[126] H. Cao, Y. Zhao, S.-T. Ho, E. Seelig, Q. Wang, R. P. Chang. Random laser action in semiconductor powder. Phys. Rev. Lett., 1999, 82: 2278-2281.

[127] M. Leonetti, C. Conti, C. Lopez. The mode-locking transition of random lasers. Nat. Photonics, 2011, 5: 615-617.

[128] BaranovA.TourniéE., Semiconductor Lasers: Fundamentals and Applications (Elsevier, 2013).

[129] Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, H. Fu. Perovskite microdisk microlasers self-assembled from solution. Adv. Mater., 2015, 27: 3405-3410.

[130] W. Zhang, L. Peng, J. Liu, A. Tang, J. S. Hu, J. Yao, Y. S. Zhao. Controlling the cavity structures of two‐photon‐pumped perovskite microlasers. Adv. Mater., 2016, 28: 4040-4046.

[131] C. J. Chang-Hasnain. Tunable VCSEL. IEEE J. Sel. Top. Quantum Electron., 2000, 6: 978-987.

[132] S. Chen, C. Zhang, J. Lee, J. Han, A. Nurmikko. High‐Q, low‐threshold monolithic perovskite thin‐film vertical‐cavity lasers. Adv. Mater., 2017, 29: 1604781.

[133] Y. Wang, X. Li, V. Nalla, H. Zeng, H. Sun. Solution‐processed low threshold vertical cavity surface emitting lasers from all‐inorganic perovskite nanocrystals. Adv. Func. Mater., 2017, 27: 1605088.

[134] E. P. Booker, M. B. Price, P. J. Budden, H. Abolins, Y. del Valle‐Inclan Redondo, L. Eyre, I. Nasrallah, R. T. Phillips, R. H. Friend, F. Deschler. Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites. Adv. Opt. Mater., 2018, 6: 1800616.

[135] Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X.-Y. Zhu, S. Jin. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater., 2019, 4: 169-188.

[136] W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, P. Lu. Cooperative enhancement of two‐photon‐absorption‐induced photoluminescence from a 2D perovskite‐microsphere hybrid dielectric structure. Adv. Funct. Mater., 2018, 28: 1707550.

[137] H. Yang, R. Trouillon, G. Huszka, M. A. Gijs. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Lett., 2016, 16: 4862-4870.

[138] Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, L. Li. Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays. Opt. Express, 2014, 22: 23552-23564.

[139] Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, H. Zeng. Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small, 2016, 12: 5622-5632.

[140] B. Du, W. Yang, Q. Jiang, H. Shan, D. Luo, B. Li, W. Tang, F. Lin, B. Shen, Q. Gong. Plasmonic‐functionalized broadband perovskite photodetector. Adv. Opt. Mater., 2018, 6: 1701271.

[141] C.-K. Lim, Q. Li, T. Zhang, T. Thomay, A. N. Cartwright, M. T. Swihart, P. N. Prasad. Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker. Sol. Energy Mater. Sol. Cells, 2018, 176: 30-35.

[142] A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, A. Di Carlo. Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells. Adv. Opt. Mater., 2018, 6: 1800576.

[143] J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, X. Zhang. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron., 2018, 1: 404-410.

[144] J. Bao, V. G. Hadjiev. Origin of luminescent centers and edge states in low-dimensional lead halide perovskites: controversies, challenges and instructive approaches. Nano-Micro Lett., 2019, 11: 26.

[145] B. Piccione, C.-H. Cho, L. K. van Vugt, R. Agarwal. All-optical active switching in individual semiconductor nanowires. Nat. Nanotechnol., 2012, 7: 640-645.

[146] X. Guo, Y. Ying, L. Tong. Photonic nanowires: from subwavelength waveguides to optical sensors. Acc. Chem. Res., 2014, 47: 656-666.

[147] S. Kim, R. Yan. Recent developments in photonic, plasmonic and hybrid nanowire waveguides. J. Mater. Chem. C, 2018, 6: 11795-11816.

[148] Y. Dong, Y. Zhang, X. Li, Y. Feng, H. Zhang, J. Xu. Chiral perovskites: promising materials toward next‐generation optoelectronics. Small, 2019, 15: 1902237.

Shuai Zhang, Yangguang Zhong, Fan Yang, Qinxuan Cao, Wenna Du, Jianwei Shi, Xinfeng Liu. Cavity engineering of two-dimensional perovskites and inherent light-matter interaction[J]. Photonics Research, 2020, 8(11): 11000A72.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!