Opto-Electronic Advances, 2020, 3 (1): 01190027, Published Online: Mar. 25, 2020  

Direct laser interference patterning of nonvolatile magnetic nanostructures in Fe60Al40 alloy via disorder-induced ferromagnetism

Author Affiliations
1 Department of Physics, University of Konstanz, 78457 Konstanz, Germany
2 Institute for Physics of Microstructures of RAS, 603950 GSP-105 Nizhny Novgorod, Russian
Copy Citation Text

Philipp Graus, Thomas B. Möller, Paul Leiderer, Johannes Boneberg, Nikolay I. Polushkin. Direct laser interference patterning of nonvolatile magnetic nanostructures in Fe60Al40 alloy via disorder-induced ferromagnetism[J]. Opto-Electronic Advances, 2020, 3(1): 01190027.

References

[1] F C Nix, W Shockley. Order-disorder transformations in alloys. Rev Mod Phys, 1938, 10: 1-71.

[2] H E Cook, D de Fontaine, J E Hilliard. A model for diffusion on cubic lattices and its application to the early stages of ordering. Acta Metall, 1969, 17: 765-773.

[3] H Metiu, K Kitahara, J Ross. Stochastic theory of the kinetics of phase transitions. J Chem Phys, 1976, 64: 292-299.

[4] A G Khachaturyan. Ordering in substitutional and interstitial solid solutions. Prog Mater Sci, 1978, 22: 1-150.

[5] G Martin. Relaxation rate of conserved and nonconserved order parameters in replacive transitions. Phys Rev B, 1994, 50: 12362-12366.

[6] J Ye, P Bellon. Nanoscale patterning of chemical order induced by displacement cascades in irradiated alloys. Phys Rev B, 2004, 70: 094104.

[7] H Mehrer, M Eggersmann, A Gude, M Salamon, B Sepiol. Diffusion in intermetallic phases of the Fe-Al and Fe-Si Systems. Mater Sci Eng: A, 1997, 239-240: 889-898.

[8] M Eggersmann, H Mehrer. Diffusion in intermetallic phases of the Fe-Al system. Philos Mag A, 2000, 80: 1219-1244.

[9] R Würschum, C Grupp, H E Schaefer. Simultaneous study of vacancy formation and migration at high temperatures in B2-type Fe aluminides. Phys Rev Lett, 1995, 75: 97-100.

[10] M Stana, B Sepiol, R Kozubski, M Leitner. Chemical ordering beyond the superstructure in long-range ordered systems. New J Phys, 2016, 18: 113051.

[11] G P Huffman, R M Fisher. Mössbauer studies of ordered and cold-worked Fe-Al alloys containing 30 to 50 at. % aluminum. J Appl Phys, 1967, 38: 735.

[12] P A Beck. Some recent results on magnetism in alloys. Metall Mater Trans B, 1971, 2: 2015-2024.

[13] A Hernando, X Amils, J Nogués, S Surinãch, M D Baró, et al.. Influence of magnetization on the reordering of nanostructured ball-milled Fe-40 at. % Al powders. Phys Rev B, 1998, 58: R118649(R).

[14] E Menéndez, J Sort, M O Liedke, J Fassbender, S Suriñach, et al.. Two-fold origin of the deformation-induced ferromagnetism in bulk Fe60Al40 (at.%) alloys. New J Phys, 2008, 10: 103030.

[15] L E Zamora, G A P Alcázar, G Y Vélez, J D Betancur, J F Marco, et al.. Disorder effect on the magnetic behavior of mechanically alloyed Fe1-x Alx (0.2≤x≤0.4). Phys Rev B, 2009, 79: 094418.

[16] Y Murakami, K Niitsu, T Tanigaki, R Kainuma, H S Park, et al.. Magnetization amplified by structural disorder within nanometre scale interface region. Nat Commun, 2014, 5: 4133.

[17] R Bali, S Wintz, F Meutzner, R Hübner, R Boucher, et al.. Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism. Nano Lett, 2014, 14: 435-441.

[18] N I Polushkin, V Oliveira, R Vilar, M He, M V Shugaev, et al.. Phase- change magnetic memory: Rewritable ferromagnetism by laser quenching of chemical disorder in Fe60Al40 alloy. Phys Rev Appl, 2018, 10: 024023.

[19] Y Yoshida, K Oosawa, S Watanabe, H Kaiju, K Kondo, et al.. Nanopatterns induced by pulsed laser irradiation on the surface of an Fe-Al alloy and their magnetic properties. Appl Phys Lett, 2013, 102: 183109.

[20] J Ehrler, M He, M V Shugaev, N I Polushkin, S Wintz, et al.. Laser-rewriteable ferromagnetism at thin-film surfaces. ACS Appl Mater Interfaces, 2018, 10: 15232-15239.

[21] E Apiñaniz, F Plazaola, J S Garitaonandia. Electronic structure calculations of Fe-rich ordered and disordered Fe-Al alloys. Eur Phys J B, 2003, 31: 167-177.

[22]

Plazaola F, Apiñaniz E, Rodriguez D M, Legarra E, Garitaonandia J S. Fe-Al alloys' magnetism. In Advanced Magnetic Materials, Ed. by Malkinski L, University of New Orleans, USA, 2002.

[23] N I Kulikov, A V Postnikov, G Borstel, J Braun. Onset of magnetism in B2 transition-metal aluminides. Phys Rev B, 1999, 59: 6824-6833.

[24] A V Smirnov, W A Shelton, D D Johnson. Importance of thermal disorder on the properties of alloys: origin of paramagnetism and structural anomalies in bcc-based Fe1-xAlx. Phys Rev B, 2005, 71: 064408.

[25] M Palm, F Stein, G Dehm. Iron aluminides. Annu Rev Mater Res, 2019, 49: 297-326.

[26] L Müller-Meskamp, Y H Kim, T Roch, S Hofmann, R Scholz, et al.. Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning. Adv Mater, 2012, 24: 906-910.

[27] C Daniel, F Mücklich, Z Liu. Periodical micro-nano-structuring of metallic surfaces by interfering laser beams. Appl Surf Sci, 2003, 208-209: 317-321.

[28] M Zheng, M Yu, Y Liu, R Skomski, S H Liou, et al.. Magnetic nanodot arrays produced by direct laser interference lithography. Appl Phys Lett, 2001, 79: 2606-2608.

[29] M Stärk, F Schlickeiser, D Nissen, B Hebler, P Graus, et al.. Controlling the magnetic structure of Co/Pd thin films by direct laser interference patterning. Nanotechnology, 2015, 26: 205302.

[30] I Martín-Fabiani, S Riedel, D R Rueda, J Siegel, J Boneberg, et al.. Micro- and submicrostructuring thin polymer films with two and three-beam single pulse laser interference lithography. Langmuir, 2014, 30: 8973-8979.

[31] C S Davies, J Januŝonis, A V Kimel, A Kirilyuk, A Tsukamoto, et al.. Towards massively parallelized all-optical magnetic recording. J Appl Phys, 2018, 123: 213904.

[32] J Timmerwilke, S H Liou, S F Cheng, A S Edelstein. Rewriting magnetic phase change memory by laser heating. J Phys D: Appl Phys, 2016, 49: 165005.

[33] D P Wang, Z B Wang, Z A Zhang, Y Yue, D Y Li, et al.. Effects of polarization on four-beam laser interference lithography. Appl Phys Lett, 2013, 102: 081903.

[34]

Bischof J. Metallische dünnfilmschmelzen nach pulslaser-bestrahlung: phasenumwandlungen und Instabilitäten (Konstanz, Univ, Diss, 1997).

[35] A Rudajevová, J Buriánek. Determination of thermal diffusivity and thermal conductivity of Fe-Al Alloys in the concentration range 22 to 50 at.% Al. J Phase Equilib, 2001, 22: 560-563.

[36] D Chanbi, E Ogam, S E Amara, Z E A Fellah. Synthesis and mechanical characterization of binary and ternary intermetallic alloys based on Fe-Ti-Al by resonant ultrasound vibrational methods. Materials, 2018, 11: 746.

[37] J Piatkowski, R Przeliorz, M Jablonska. The specific heat capacity and oxidation kinetics of NiAl, FeAl and TiAl alloys. Solid State Phenom, 2013, 203-204: 431-434.

[38] A A Bukharaev, D V Ovchinnikov, N I Nurgazizov, E F Kukovitskiĭ, M Klaĭber, et al.. Investigation of micromagnetism and magnetic reversal of Ni nanoparticles using a magnetic force microscope. Phys Solid State, 1998, 40: 1163-1168.

[39] A M Alekseev, V A Bykov, A F Popkov, N I Polushkin, V I Korneev. Observation of remanent states of small magnetic particles: Micromagnetic simulation and experiment. J Exp Theor Phys Lett, 2002, 75: 268-272.

[40] X B Zhu, P Grutter. Magnetic force microscopy studies of patterned magnetic structures. IEEE Trans Magn, 2003, 39: 3420-3425.

[41] W Zhang, R Singh, N Bray-Ali, S Haas. Scaling analysis and application: phase diagram of magnetic nanorings and elliptical nanoparticles. Phys Rev B, 2008, 77: 144428.

[42] J Chang, V L Mironov, B A Gribkov, A A Fraerman, S A Gusev, et al.. Magnetic state control of ferromagnetic nanodots by magnetic force microscopy probe. J Appl Phys, 2006, 100: 104304.

[43] J S Wei, X B Jiao, F X Gan, M F Xiao. Laser pulse induced bumps in chalcogenide phase change films. J Appl Phys, 2008, 103: 124516.

[44] F Stein, M Palm. Re-determination of transition temperatures in the Fe-Al system by differential thermal analysis. Int J Mater Res, 2007, 98: 580-588.

Philipp Graus, Thomas B. Möller, Paul Leiderer, Johannes Boneberg, Nikolay I. Polushkin. Direct laser interference patterning of nonvolatile magnetic nanostructures in Fe60Al40 alloy via disorder-induced ferromagnetism[J]. Opto-Electronic Advances, 2020, 3(1): 01190027.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!