激光与光电子学进展, 2020, 57 (15): 153001, 网络出版: 2020-08-04   

结合分数阶微分技术与机器学习算法的土壤有机碳含量光谱估测 下载: 1107次

Combination of Fractional Order Differential and Machine Learning Algorithm for Spectral Estimation of Soil Organic Carbon Content
赵启东 1,2,**葛翔宇 1,2丁建丽 1,2,*王敬哲 1,2,3张振华 1,2田美玲 1,2
作者单位
1 新疆大学绿洲生态教育部重点实验室, 新疆 乌鲁木齐 830046
2 新疆大学资源与环境科学学院智慧城市与环境建模自治区普通高校重点实验室, 新疆 乌鲁木齐 830046
3 广东省生态环境技术研究所, 广东 广州 510650
引用该论文

赵启东, 葛翔宇, 丁建丽, 王敬哲, 张振华, 田美玲. 结合分数阶微分技术与机器学习算法的土壤有机碳含量光谱估测[J]. 激光与光电子学进展, 2020, 57(15): 153001.

Qidong Zhao, Xiangyu Ge, Jianli Ding, Jingzhe Wang, Zhenhua Zhang, Meiling Tian. Combination of Fractional Order Differential and Machine Learning Algorithm for Spectral Estimation of Soil Organic Carbon Content[J]. Laser & Optoelectronics Progress, 2020, 57(15): 153001.

参考文献

[1] Sakschewski B, von Bloh W, Boit A, et al. Resilience of Amazon forests emerges from plant trait diversity[J]. Nature Climate Change, 2016, 6(11): 1032-1036.

[2] 张子鹏, 丁建丽, 王敬哲. 基于谐波分析算法的干旱区绿洲土壤光谱特性研究[J]. 光学学报, 2019, 39(2): 0228003.

    Zhang Z P, Ding J L, Wang J Z. Spectral characteristics of oasis soil in arid area based on harmonic analysis algorithm[J]. Acta Optica Sinica, 2019, 39(2): 0228003.

[3] Viscarra Rossel R A, Behrens T, Ben-Dor E, et al. A global spectral library to characterize the world's soil[J]. Earth-Science Reviews, 2016, 155: 198-230.

[4] Fang X, Guo X L, Zhang C, et al. Contributions of climate change to the terrestrial carbon stock of the arid region of China: a multi-dataset analysis[J]. Science of the Total Environment, 2019, 668: 631-644.

[5] O'Rourke S M. Stockmann U, Holden N M, et al. An assessment of model averaging to improve predictive power of portable VIS-NIR and XRF for the determination of agronomic soil properties[J]. Geoderma, 2016, 279: 31-44.

[6] Cambou A, Cardinael R, Kouakoua E, et al. Prediction of soil organic carbon stock using visible and near infrared reflectance spectroscopy (VNIRS) in the field[J]. Geoderma, 2016, 261: 151-159.

[7] Ding J L, Yang A X, Wang J Z, et al. Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy[J]. PeerJ, 2018, 6: e5714.

[8] Dotto A C. Dalmolin R S D, Caten A T, et al. A systematic study on the application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction of soil organic carbon by VIS-NIR spectra[J]. Geoderma, 2018, 314: 262-274.

[9] 刘艳芳, 宋玉玲, 郭龙, 等. 结合高光谱信息的土壤有机碳密度地统计模型[J]. 农业工程学报, 2017, 33(2): 183-191.

    Liu Y F, Song Y L, Guo L, et al. Geostatistical models of soil organic carbon density prediction based on soil hyperspectral reflectance[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(2): 183-191.

[10] Filippi P, Cattle S R. Bishop T F A, et al. Combining ancillary soil data with VIS-NIR spectra to improve predictions of organic and inorganic carbon content of soils[J]. MethodsX, 2018, 5: 551-560.

[11] Hong Y S, Chen S C, Liu Y L, et al. Combination of fractional order derivative and memory-based learning algorithm to improve the estimation accuracy of soil organic matter by visible and near-infrared spectroscopy[J]. CATENA, 2019, 174: 104-116.

[12] Vašát R, Kodešová R, Klement A, et al. Simple but efficient signal pre-processing in soil organic carbon spectroscopic estimation[J]. Geoderma, 2017, 298: 46-53.

[13] Delwiche S R, Reeves J B. A graphical method to evaluate spectral preprocessing in multivariate regression calibrations: example with Savitzky-Golay filters and partial least squares regression[J]. Applied Spectroscopy, 2010, 64(1): 73-82.

[14] Wang J Z, Ding J L, Abulimiti A, et al. Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake Wetland, Northwest China[J]. PeerJ, 2018, 6: e4703.

[15] Wang X P, Zhang F, Ding J L, et al. Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR), Northwest China, based on a Bootstrap-BP neural network model and optimal spectral indices[J]. Science of the Total Environment, 2018, 615: 918-930.

[16] Hong Y S, Chen Y Y, Yu L, et al. Combining fractional order derivative and spectral variable selection for organic matter estimation of homogeneous soil samples by VIS-NIR spectroscopy[J]. Remote Sensing, 2018, 10(3): 479.

[17] 葛翔宇, 丁建丽, 王敬哲, 等. 基于竞争适应重加权采样算法耦合机器学习的土壤含水量估算[J]. 光学学报, 2018, 38(10): 1030001.

    Ge X Y, Ding J L, Wang J Z, et al. Estimation of soil moisture content based on competitive adaptive reweighted sampling algorithm coupled with machine learning[J]. Acta Optica Sinica, 2018, 38(10): 1030001.

[18] 包青岭, 丁建丽, 王敬哲. 利用随机森林方法优选光谱特征预测土壤水分含量[J]. 激光与光电子学进展, 2018, 55(11): 113002.

    Bao Q L, Ding J L, Wang J Z. Prediction of soilmoisture content by selecting spectral characteristics using random forest method[J]. Laser & Optoelectronics Progress, 2018, 55(11): 113002.

[19] 王飞, 杨胜天, 丁建丽, 等. 环境敏感变量优选及机器学习算法预测绿洲土壤盐分[J]. 农业工程学报, 2018, 34(22): 102-110.

    Wang F, Yang S T, Ding J L, et al. Environmental sensitive variable optimization and machine learning algorithm using in soil salt prediction at oasis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 102-110.

[20] Nawar S, Mouazen A M. On-line VIS-NIR spectroscopy prediction of soil organic carbon using machine learning[J]. Soil and Tillage Research, 2019, 190: 120-127.

[21] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    Lu RK. Soil agricultural chemical analysis methods[M]. Beijing: China Agriculture Science and Technology Press, 2000.

[22] Ge X Y, Wang J Z, Ding J L, et al. Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring[J]. PeerJ, 2019, 7: e6926.

[23] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.

[24] Belgiu M, Dragut L. Random forest in remote sensing: a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 24-31.

[25] Du P J, Samat A, Waske B, et al. Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105: 38-53.

[26] Rossel R A V, Behrens T. Using data mining to model and interpret soil diffuse reflectance spectra[J]. Geoderma, 2010, 158(1/2): 46-54.

[27] 郑年年, 栾小丽, 刘飞. 近红外光谱Elastic Net建模方法与应用[J]. 光谱学与光谱分析, 2018, 38(10): 3096-3100.

    Zheng N N, Luan X L, Liu F. Elastic Net modeling for near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(10): 3096-3100.

[28] Ogutu J O, Schulz-Streeck T, Piepho H P. Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions[J]. BMC Proceedings, 2012, 6(s2): s10.

[29] Liu L F, Ji M, Buchroithner M F. Combining partial least squares and the gradient-boosting method for soil property retrieval using visible near-infrared shortwave infrared spectra[J]. Remote Sensing, 2017, 9(12): 1299.

[30] 田美玲, 葛翔宇, 丁建丽, 等. 耦合机器学习和机载高光谱数据的土壤含水量估算[J]. 激光与光电子学进展, 2020, 57(9): 093002.

    Tian M L, Ge X Y, Ding J L, et al. Coupled machine learning and unmanned aerial vehicle based hyperspectral data for soil moisture content estimation[J]. Laser & Optoelectronics Progress, 2020, 57(9): 093002.

[31] Wang J Z, Tiyip T, Ding J L, et al. Quantitative estimation of organic matter content in arid soil using VIS-NIR spectroscopy preprocessed by fractional derivative[J]. Journal of Spectroscopy, 2017, 2017: 1375158.

[32] Hong Y S, Liu Y L, Chen Y Y, et al. Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy[J]. Geoderma, 2019, 337: 758-769.

[33] 史舟, 王乾龙, 彭杰, 等. 中国主要土壤高光谱反射特性分类与有机质光谱预测模型[J]. 中国科学(地球科学), 2014, 44(5): 978-988.

    Shi Z, Wang Q L, Peng J, et al. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations[J]. Scientia Sinica (Terrae), 2014, 44(5): 978-988.

[34] Shi Z, Ji W J. Viscarra Rossel R A, et al. Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese VIS-NIR spectral library[J]. European Journal of Soil Science, 2015, 66(4): 679-687.

赵启东, 葛翔宇, 丁建丽, 王敬哲, 张振华, 田美玲. 结合分数阶微分技术与机器学习算法的土壤有机碳含量光谱估测[J]. 激光与光电子学进展, 2020, 57(15): 153001. Qidong Zhao, Xiangyu Ge, Jianli Ding, Jingzhe Wang, Zhenhua Zhang, Meiling Tian. Combination of Fractional Order Differential and Machine Learning Algorithm for Spectral Estimation of Soil Organic Carbon Content[J]. Laser & Optoelectronics Progress, 2020, 57(15): 153001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!