光学学报, 2020, 40 (22): 2230001, 网络出版: 2020-10-25   

基于多光谱成像和随机森林算法的石窟表面风化智能评估方法 下载: 962次

Intelligent Evaluation Method of Grottoes Surface Weathering Based on Multispectral Imaging and Random Forest Algorithm
作者单位
1 西安建筑科技大学信息与控制工程学院, 陕西 西安 710055
2 陕西省文物保护研究院, 陕西 西安 710075
引用该论文

曹赤鹏, 王慧琴, 王可, 王展, 张刚, 马涛. 基于多光谱成像和随机森林算法的石窟表面风化智能评估方法[J]. 光学学报, 2020, 40(22): 2230001.

Chipeng Cao, Huiqin Wang, Ke Wang, Zhan Wang, Gang Zhang, Tao Ma. Intelligent Evaluation Method of Grottoes Surface Weathering Based on Multispectral Imaging and Random Forest Algorithm[J]. Acta Optica Sinica, 2020, 40(22): 2230001.

参考文献

[1] 柴勃隆, 苏伯民, 张文元, 等. 敦煌壁画绘画材料多光谱图像标准数据库的建立和应用[J]. 光谱学与光谱分析, 2017, 37(10): 3289-3306.

    Chai B L, Su B M, Zhang W Y, et al. Standard multispectral image database for paint materials used in the Dunhuang murals[J]. Spectroscopy and Spectral Analysis, 2017, 37(10): 3289-3306.

[2] Liu R Z, Zhang B J, Zhang H, et al. Deterioration of Yungang grottoes: diagnosis and research[J]. Journal of Cultural Heritage, 2011, 12(4): 494-499.

[3] Bruthans J, Filippi M, Schweigstillová J, et al. Quantitative study of a rapidly weathering overhang developed in an artificially wetted sandstone cliff[J]. Earth Surface Processes and Landforms, 2017, 42(5): 711-723.

[4] Qin Y, Wang Y H, Li L L, et al. Experimental weathering of weak sandstone without direct water participation by using sandstone from the Yungang grottoes in Datong, China[J]. Rock Mechanics and Rock Engineering, 2016, 49(11): 4473-4478.

[5] McAllister D, Warke P, McCabe S. Stone temperature and moisture variability under temperate environmental conditions: implications for sandstone weathering[J]. Geomorphology, 2017, 280: 137-152.

[6] Chen W W, Liao R X, Wang N, et al. Effects of experimental frost-thaw cycles on sandstones with different weathering degrees: a case from the Bingling Temple Grottoes, China[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(7): 5311-5326.

[7] 凌雪, 吴萌蕾, 廖原, 等. 文物研究与保护中的无损分析技术[J]. 光谱学与光谱分析, 2018, 38(7): 2026-2031.

    Ling X, Wu M L, Liao Y, et al. Nondestructive techniques in the research and preservation of cultural relics[J]. Spectroscopy and Spectral Analysis, 2018, 38(7): 2026-2031.

[8] 刘爽, 谭鑫, 刘成玉, 等. 高光谱数据处理算法的小麦赤霉病籽粒识别[J]. 光谱学与光谱分析, 2019, 39(11): 3540-3546.

    Liu S, Tan X, Liu C Y, et al. Recognition of fusarium head blight wheat grain based on hyperspectral data processing algorithm[J]. Spectroscopy and Spectral Analysis, 2019, 39(11): 3540-3546.

[9] 席志红, 侯彩燕, 袁昆鹏, 等. 基于深层残差网络的加速图像超分辨率重建[J]. 光学学报, 2019, 39(2): 0210003.

    Xi Z H, Hou C Y, Yuan K P, et al. Super-resolution reconstruction of accelerated image based on deep residual network[J]. Acta Optica Sinica, 2019, 39(2): 0210003.

[10] 马红强, 马时平, 许悦雷, 等. 基于深度卷积神经网络的低照度图像增强[J]. 光学学报, 2019, 39(2): 0210004.

    Ma H Q, Ma S P, Xu Y L, et al. Low-light image enhancement based on deep convolutional neural network[J]. Acta Optica Sinica, 2019, 39(2): 0210004.

[11] 吴止锾, 高永明, 李磊, 等. 类别非均衡遥感图像语义分割的全卷积网络方法[J]. 光学学报, 2019, 39(4): 0428004.

    Wu Z H, Gao Y M, Li L, et al. Fully convolutional network method of semantic segmentation of class imbalance remote sensing images[J]. Acta Optica Sinica, 2019, 39(4): 0428004.

[12] 张号逵, 李映, 姜晔楠. 深度学习在高光谱图像分类领域的研究现状与展望[J]. 自动化学报, 2018, 44(6): 961-977.

    Zhang H K, Li Y, Jiang Y N. Deep learning for hyperspectral imagery classification: the state of the art and prospects[J]. Acta Automatica Sinica, 2018, 44(6): 961-977.

[13] 吴俊峰, 姜志国, 张浩鹏, 等. 半监督条件随机场的高光谱遥感图像分类[J]. 遥感学报, 2017, 21(4): 588-603.

    Wu J F, Jiang Z G, Zhang H P, et al. Hyperspectral remote sensing image classification based on semi-supervised conditional random field[J]. Journal of Remote Sensing, 2017, 21(4): 588-603.

[14] Cao X H, Li R J, Ge Y M, et al. Densely connected deep random forest for hyperspectral imagery classification[J]. International Journal of Remote Sensing, 2019, 40(9): 3606-3622.

[15] Scott G J, England M R, Starms W A, et al. Training deep convolutional neural networks for land-cover classification of high-resolution imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(4): 549-553.

[16] 杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2): 236-256.

    Du P J, Xia J S, Xue Z H, et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016, 20(2): 236-256.

[17] 岑奕, 张艮中, 张立福, 等. 地物光谱不确定性及光谱角制图算法适用性研究[J]. 光谱学与光谱分析, 2015, 35(10): 2841-2845.

    Cen Y, Zhang G Z, Zhang L F, et al. Spectral uncertainty of terrestrial objects and the applicability of spectral angle mapper algorithm[J]. Spectroscopy and Spectral Analysis, 2015, 35(10): 2841-2845.

[18] 蔡加欣, 冯国灿, 汤鑫, 等. 基于局部轮廓和随机森林的人体行为识别[J]. 光学学报, 2014, 34(10): 1015006.

    Cai J X, Feng G C, Tang X, et al. Human action recognition based on local image contour and random forest[J]. Acta Optica Sinica, 2014, 34(10): 1015006.

[19] 方馨蕊, 温兆飞, 陈吉龙, 等. 随机森林回归模型的悬浮泥沙浓度遥感估算[J]. 遥感学报, 2019, 23(4): 756-772.

    Fang X R, Wen Z F, Chen J L, et al. Remote sensing estimation of suspended sediment concentration based on random forest regression model[J]. Journal of Remote Sensing, 2019, 23(4): 756-772.

[20] 王猛, 张新长, 王家耀, 等. 结合随机森林面向对象的森林资源分类[J]. 测绘学报, 2020, 49(2): 235-244.

    Wang M, Zhang X C, Wang J Y, et al. Forest resource classification based on random forest and object oriented method[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2): 235-244.

[21] 徐朝斌, 邱骏挺, 钟全林, 等. 利用反射光谱研究砂岩风化与排氮作用: 以江西龙虎山为例[J]. 光谱学与光谱分析, 2019, 39(12): 3801-3808.

    Xu C B, Qiu J T, Zhong Q L, et al. Reflectance spectroscopy applied in sandstone weathering and nitrogen excretion: a case study in Longhushan mountain, Jiangxi Province[J]. Spectroscopy and Spectral Analysis, 2019, 39(12): 3801-3808.

[22] 蒋晓东, 曹建劲, 李易安, 等. 近红外光谱技术在红砂岩文物风化研究中的应用[J]. 光谱学与光谱分析, 2011, 31(8): 2102-2105.

    Jiang X D, Cao J J, Li Y A, et al. Application of near-infrared spectrum technology to research of weathering of red sandstone relics[J]. Spectroscopy and Spectral Analysis, 2011, 31(8): 2102-2105.

[23] Skurichina M. Duin R P W. Bagging, boosting and the random subspace method for linear classifiers[J]. Pattern Analysis & Applications, 2002, 5(2): 121-135.

[24] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.

[25] 张志强, 张新长, 辛秦川, 等. 结合像元级和目标级的高分辨率遥感影像建筑物变化检测[J]. 测绘学报, 2018, 47(1): 102-112.

    Zhang Z Q, Zhang X C, Xin Q C, et al. Combining the pixel-based and object-based methods for building change detection using high-resolution remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1): 102-112.

[26] Shannon C E. A mathematical theory of communication[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1): 3-55.

[27] 袁博, 胡冰. 相对熵结合互信息的高光谱波段选择方法[J]. 遥感信息, 2019, 34(6): 33-38.

    Yuan B, Hu B. Band selection algorithm for hyperspectral remote sensing with relative entropy and mutual information[J]. Remote Sensing Information, 2019, 34(6): 33-38.

曹赤鹏, 王慧琴, 王可, 王展, 张刚, 马涛. 基于多光谱成像和随机森林算法的石窟表面风化智能评估方法[J]. 光学学报, 2020, 40(22): 2230001. Chipeng Cao, Huiqin Wang, Ke Wang, Zhan Wang, Gang Zhang, Tao Ma. Intelligent Evaluation Method of Grottoes Surface Weathering Based on Multispectral Imaging and Random Forest Algorithm[J]. Acta Optica Sinica, 2020, 40(22): 2230001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!