中国激光, 2018, 45 (2): 0207020, 网络出版: 2018-02-28   

用于肿瘤光热治疗的有机纳米材料研究进展 下载: 1624次特邀综述

Progress in Organic Nanomaterials for Laser-Induced Photothermal Therapy of Tumor
作者单位
华南师范大学生物光子学研究院激光生命科学教育部重点实验室, 广东 广州 510631
引用该论文

梁国海, 邢达. 用于肿瘤光热治疗的有机纳米材料研究进展[J]. 中国激光, 2018, 45(2): 0207020.

Liang Guohai, Xing Da. Progress in Organic Nanomaterials for Laser-Induced Photothermal Therapy of Tumor[J]. Chinese Journal of Lasers, 2018, 45(2): 0207020.

参考文献

[1] Jaque D. Martinez M L, del Rosal B, et al. Nanoparticles for photothermal therapies[J]. Nanoscale, 2014, 6(16): 9494-9530.

[2] Rahmathulla G, Recinos P F, Kamian K. et al. Mri-guided laser interstitial thermal therapy in neuro-oncology: A review of its current clinical applications[J]. Oncology, 2014, 87(2): 67-82.

[3] Drake P, Cho H J, Shih P S. et al. Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia[J]. Journal of Materials Chemistry, 2007, 17(46): 4914-4918.

[4] Prasad N K, Rathinasamy K, Panda D. et al. Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of γ-MnxFe2-xO3 synthesized by a single step process[J]. Journal of Materials Chemistry, 2007, 17(48): 5042-5051.

[5] Nikoobakht B. El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method[J]. Chemistry of Materials, 2003, 15(10): 1957-1962.

[6] Xia Y N, Li W Y, Cobley C M. et al. Gold nanocages: From synthesis to theranostic applications[J]. Accounts of Chemical Research, 2011, 44(10): 914-924.

[7] Yang K, Feng L Z, Shi X Z. et al. Nano-graphene in biomedicine: Theranostic applications[J]. Chemical Society Reviews, 2013, 42(2): 530-547.

[8] Huang X Q, Tang S H, Mu X L. et al. Freestanding palladium nanosheets with plasmonic and catalytic properties[J]. Nature Nanotechnology, 2011, 6(1): 28-32.

[9] Zhou M, Zhang R, Huang M. et al. A chelator-free multifunctional [ 64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy [J]. Journal of the American Chemical Society, 2010, 132(43): 15351-15358.

[10] Li J, Jiang F, Yang B. et al. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy[J]. Scientific Reports, 2013, 3: 1998.

[11] Chou S S, Kaehr B, Kim J. et al. Chemically exfoliated MoS2 as near-infrared photothermal agents[J]. Angewandte Chemie International Edition, 2013, 52(15): 4160-4164.

[12] Liu Z, Fan A C, Rakhra K. et al. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy[J]. Angewandte Chemie International Edition, 2009, 48(41): 7668-7672.

[13] Bhirde A A, Patel V, Gavard J. et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery[J]. ACS Nano, 2009, 3(2): 307-316.

[14] Poland C A, Duffin R, Kinloch I. et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study[J]. Nature Nanotechnology, 2008, 3(7): 423-428.

[15] Takagi A, Hirose A, Nishimura T. et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery[J]. The Journal of Toxicological Sciences, 2008, 33(1): 105-116.

[16] Yuan A, Wu J H, Tang X L. et al. Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies[J]. Journal of Pharmaceutical Sciences, 2013, 102(1): 6-28.

[17] Muhanna N, Jin C S, Huynh E. et al. Phototheranostic porphyrin nanoparticles enable visualization and targeted treatment of head and neck cancer in clinically relevant models[J]. Theranostics, 2015, 5(12): 1428-1443.

[18] Zheng X H, Xing D, Zhou F F. et al. Indocyanine green-containing nanostructure as near infrared dual-functional targeting probes for optical imaging and photothermal therapy[J]. Molecular Pharmaceutics, 2011, 8(2): 447-456.

[19] Yue C X, Liu P, Zheng M B. et al. IR-780 dye loaded tumor targeting theranostic nanoparticles for NIR imaging and photothermal therapy[J]. Biomaterials, 2013, 34(28): 6853-6861.

[20] Cheng L, He W W, Gong H. et al. Pegylated micelle nanoparticles encapsulating a non-fluorescent near-infrared organic dye as a safe and highly-effective photothermal agent for in vivo cancer therapy[J]. Advanced Functional Materials, 2013, 23(47): 5893-5902.

[21] Zheng M B, Yue C X, Ma Y F. et al. Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy[J]. ACS Nano, 2013, 7(3): 2056-2067.

[22] Gong H, Dong Z L, Liu Y M. et al. Engineering of multifunctional nano-micelles for combined photothermal and photodynamic therapy under the guidance of multimodal imaging[J]. Advanced Functional Materials, 2014, 24(41): 6492-6502.

[23] Gao F P, Lin Y X, Li L L. et al. Supramolecular adducts of squaraine and protein for noninvasive tumor imaging and photothermal therapy in vivo[J]. Biomaterials, 2014, 35(3): 1004-1014.

[24] Chen Q, Wang C, Zhan Z X. et al. Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy[J]. Biomaterials, 2014, 35(28): 8206-8214.

[25] Huang P, Rong P F, Jin A. et al. Dye-loaded ferritin nanocages for multimodal imaging and photothermal therapy[J]. Advanced Materials, 2014, 26(37): 6401-6408.

[26] Lovell J F, Jin C S, Huynh E. et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents[J]. Nature Materials, 2011, 10(4): 324-332.

[27] Yang J, Choi J, Bang D. et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells[J]. Angewandte Chemie International Edition, 2011, 50(2): 441-444.

[28] Zha Z B, Yue X L, Ren Q S. et al. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells[J]. Advanced Materials, 2013, 25(5): 777-782.

[29] Liu Y L, Ai K L, Liu J H. et al. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy[J]. Advanced Materials, 2013, 25(9): 1353-1359.

[30] Lyu Y, Fang Y, Miao Q Q. et al. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy[J]. ACS Nano, 2016, 10(4): 4472-4481.

[31] Cheng L, Yang K, Chen Q. et al. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer[J]. ACS Nano, 2012, 6(6): 5605-5613.

[32] Dzurinko V L, Gurwood A S, Price J R. Intravenous and indocyanine green angiography[J]. Optometry, 2004, 75(12): 743-755.

[33] Yoneya S, Saito T, Komatsu Y. et al. Binding properties of indocyanine green in human blood[J]. Investigative Ophthalmology & Visual Science, 1998, 39(7): 1286-1290.

[34] Saxena V, Sadoqi M, Shao J. Degradation kinetics of indocyanine green in aqueous solution[J]. Journal of Pharmaceutical Sciences, 2003, 92(10): 2090-2097.

[35] Mordon S, Devoisselle J M, Soulie-Begu S. et al. Indocyanine green: Physicochemical factors affecting its fluorescence in vivo[J]. Microvascular Research, 1998, 55(2): 146-152.

[36] Quan B, Choi K, Kim Y H. et al. Near infrared dye indocyanine green doped silica nanoparticles for biological imaging[J]. Talanta, 2012, 99: 387-393.

[37] Altinoglu E I, Russin T J, Kaiser J M. et al. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer[J]. ACS Nano, 2008, 2(10): 2075-2084.

[38] Zheng M B, Zhao P F, Luo Z Y. et al. Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6709-6716.

[39] Liu P, Yue C X, Shi B H. et al. Dextran based sensitive theranostic nanoparticles for near-infrared imaging and photothermal therapy in vitro[J]. Chemical Communications, 2013, 49(55): 6143-6145.

[40] Song X J, Chen Q, Liu Z. Recent advances in the development of organic photothermal nano-agents[J]. Nano Research, 2015, 8(2): 340-354.

[41] Luo S L, Tan X, Qi Q R. et al. A multifunctional heptamethine near-infrared dye for cancer theranosis[J]. Biomaterials, 2013, 34(9): 2244-2251.

[42] Yu J, Javier D, Yaseen M A. et al. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules[J]. Journal of the American Chemical Society, 2010, 132(6): 1929-1938.

[43] Chen Q, Wang C, Cheng L. et al. Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy[J]. Biomaterials, 2014, 35(9): 2915-2923.

[44] Wu L, Fang S T, Shi S. et al. Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study[J]. Biomacromolecules, 2013, 14(9): 3027-3033.

[45] Sheng Z H, Song L, Zheng J X. et al. Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy[J]. Biomaterials, 2013, 34(21): 5236-5243.

[46] Chen Q, Liu X D, Chen J W. et al. A self-assembled albumin-based nanoprobe for in vivo ratiometric photoacoustic pH imaging[J]. Advanced Materials, 2015, 27(43): 6820-6827.

[47] Rong P F, Huang P, Liu Z G. et al. Protein-based photothermal theranostics for imaging-guided cancer therapy[J]. Nanoscale, 2015, 7(39): 16330-16336.

[48] Lovell J F, Jin C S, Huynh E. et al. Enzymatic regioselection for the synthesis and biodegradation of porphysome nanovesicles[J]. Angewandte Chemie International Edition, 2012, 51(10): 2429-2433.

[49] Jin C S, Lovell J F, Chen J. et al. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly[J]. ACS Nano, 2013, 7(3): 2541-2550.

[50] Ng K K, Lovell J F, Vedadi A. et al. Self-assembled porphyrin nanodiscs with structure-dependent activation for phototherapy and photodiagnostic applications[J]. ACS Nano, 2013, 7(4): 3484-3490.

[51] Huynh E, Jin C S, Wilson B C. et al. Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging[J]. Bioconjugate Chemistry, 2014, 25(4): 796-801.

[52] Liu T W. MacDonald T D, Shi J Y, et al. Intrinsically copper-64-labeled organic nanoparticles as radiotracers[J]. Angewandte Chemie International Edition, 2012, 51(52): 13128-13131.

[53] MacDonald T D, Liu T W, Zheng G. An mri-sensitive, non-photobleachable porphysome photothermal agent[J]. Angewandte Chemie International Edition, 2014, 53(27): 6956-6959.

[54] Yang K, Xu H, Cheng L. et al. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles[J]. Advanced Materials, 2012, 24(41): 5586-5592.

[55] Wang Q, Wang J D, Lv G. et al. Facile synthesis of hydrophilic polypyrrole nanoparticles for photothermal cancer therapy[J]. Journal of Materials Science, 2014, 49(9): 3484-3490.

[56] Wang C, Xu H, Liang C. et al. Iron oxide @polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect[J]. ACS Nano, 2013, 7(8): 6782-6795.

[57] Ku S H, Ryu J, Hong S K. et al. General functionalization route for cell adhesion on non-wetting surfaces[J]. Biomaterials, 2010, 31(9): 2535-2541.

[58] Bettinger C J, Bruggeman J P, Misra A. et al. Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering[J]. Biomaterials, 2009, 30(17): 3050-3057.

[59] Cho S, Kim S H. Hydroxide ion-mediated synthesis of monodisperse dopamine-melanin nanospheres[J]. Journal of Colloid and Interface Science, 2015, 458: 87-93.

[60] Hu D H, Liu C B, Song L. et al. Indocyanine green-loaded polydopamine-iron ions coordination nanoparticles for photoacoustic/magnetic resonance dual-modal imaging-guided cancer photothermal therapy[J]. Nanoscale, 2016, 8(39): 17150-17158.

[61] Park J, Brust T F, Lee H J. et al. Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers[J]. ACS Nano, 2014, 8(4): 3347-3356.

[62] Liu Y L, Ai K L, Lu L H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields[J]. Chemical Reviews, 2014, 114(9): 5057-5115.

[63] Miao Q Q, Lyu Y, Ding D. et al. Semiconducting oligomer nanoparticles as an activatable photoacoustic probe with amplified brightness for in vivo imaging of pH[J]. Advanced Materials, 2016, 28(19): 3662-3668.

[64] Pu K Y, Shuhendler A J, Rao J H. Semiconducting polymer nanoprobe for in vivo imaging of reactive oxygen and nitrogen species[J]. Angewandte Chemie International Edition, 2013, 52(39): 10325-10329.

[65] Shuhendler A J, Pu K Y, Cui L N. et al. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing[J]. Nature Biotechnology, 2014, 32(4): 373-380.

[66] Pu K Y, Mei J G, Jokerst J V. et al. Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo photoacoustic imaging[J]. Advanced Materials, 2015, 27(35): 5184-5190.

[67] Zhang J F, Yang C X, Zhang R. et al. Biocompatible D-A semiconducting polymer nanoparticle with light-harvesting unit for highly effective photoacoustic imaging guided photothermal therapy[J]. Advanced Functional Materials, 2017, 27(13): 1605094.

[68] Geng J L, Sun C Y, Liu J. et al. Biocompatible conjugated polymer nanoparticles for efficient photothermal tumor therapy[J]. Small, 2015, 11(13): 1603-1610.

梁国海, 邢达. 用于肿瘤光热治疗的有机纳米材料研究进展[J]. 中国激光, 2018, 45(2): 0207020. Liang Guohai, Xing Da. Progress in Organic Nanomaterials for Laser-Induced Photothermal Therapy of Tumor[J]. Chinese Journal of Lasers, 2018, 45(2): 0207020.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!