光学学报, 2018, 38 (5): 0527001, 网络出版: 2018-07-10   

基于四组分纠缠态的量子离物传态 下载: 765次

Quantum Teleportation Based on Four-Partite Entangled States
作者单位
1 山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
2 山西大学极端光学协同创新中心, 山西 太原 030006
引用该论文

孙颍榕, 霍美如, 闫智辉, 贾晓军. 基于四组分纠缠态的量子离物传态[J]. 光学学报, 2018, 38(5): 0527001.

Yingrong Sun, Meiru Huo, Zhihui Yan, Xiaojun Jia. Quantum Teleportation Based on Four-Partite Entangled States[J]. Acta Optica Sinica, 2018, 38(5): 0527001.

参考文献

[1] Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknow quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70(13): 1895-1899.

[2] Boschi D, Branca S, Martini D F, et al. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1998, 80(6): 1121-1125.

[3] Furusawa A, Serensen J L, Braunstein S L, et al. Unconditional quantum teleportation[J]. Science, 1998, 282(5389): 706-709.

[4] Bowen W P, Treps N, Buchler B C, et al. Experimental investigation of continuous-variable quantum teleportation[J]. Physical Review A, 2003, 67(3): 032302.

[5] Zhang T C, Goh K W, Chou C W, et al. Quantum teleportation of light beams[J]. Physical Review A, 2003, 67(3): 033802.

[6] Pirandola S, Eisert J, Weedbrook C, et al. Advances in quantum teleportation[J]. Nature Photonics, 2015, 9(10): 641-652.

[7] 邓瑞婕, 闫智辉, 贾晓军. 基于电磁诱导透明机制的压缩光场量子存储的分析[J]. 物理学报, 2017, 66(7): 074201.

    Deng R J, Yan Z H, Jia X J. Analysis of electromagnetically induced transparency based on quantum memory of squeezed state of light[J]. Acta Physica Sinica, 2017, 66(7): 074201.

[8] Raussendorf R, Briegel H J. A one-way quantum computer[J]. Physical Review Letters, 2000, 86(22): 5188-5191.

[9] Kimble H J. The quantum internet[J]. Nature, 2008, 453(7198): 1023-1030.

[10] Mehmet M, Ast S, Eberle T, et al. Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB[J]. Optics Express, 2011, 19(25): 25763-25772.

[11] 邬志强, 周海军, 王雅君, 等. 利用自制的单频激光器获得近通讯波段正交振幅压缩态光场[J]. 量子光学学报, 2013, 19(1): 1-5.

    Wu Z Q, Zhou H J, Wang Y J, et al. Generation of bright amplitude squeezed-light at 1.3 μm by using a home-made all solid state laser as pump source[J]. Acta Sinica Quantum Optica, 2013, 19(1): 1-5.

[12] 吴量, 刘艳红, 邓瑞婕, 等. 795 nm两组份偏振纠缠光场的实验制备[J]. 光学学报, 2017, 37(5): 0527001.

    Wu L, Liu Y H, Deng R J, et al. Experimental preparation of bipartite polarization entangled optical fields at 795 nm[J]. Acta Optica Sinica, 2017, 37(5): 0527001.

[13] 孙颖, 赵尚弘, 东晨. 基于量子存储和纠缠光源的测量设备无关量子密钥分配网络[J]. 光学学报, 2016, 36(3): 0327001.

    Sun Y, Zhao S H, Dong C. Measurement device independent quantum key distribution network based on quantum memory and entangled photon sources[J]. Acta Optica Sinica, 2016, 36(3): 0327001.

[14] 陈岩, 沈咏, 邹宏新. 基于单脉冲多位编码的全光纤连续变量量子密钥分发[J]. 光学学报, 2015, 35(7): 0727001.

    Chen Y, Shen Y, Zou H X. An all-fiber continuous variable quantum key distribution based on multi-bits coding of single pulse[J]. Acta Optica Sinica, 2015, 35(7): 0727001.

[15] Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390(6660): 575-579.

[16] Vaidman L. Teleportation of quantum states[J]. Physical Review A, 1994, 49(2): 1473-1476.

[17] Braunstein S L, Kimble H J. Teleportation of continuous quantum variables[J]. Physical Review Letters, 1998, 80(4): 869-872.

[18] Furusawa A, Sorensen J L, Braunstein S L, et al. Unconditional quantum teleportation[J]. Science, 1998, 282(7): 706-709.

[19] Ren J G, Xu P, Yong H L, et al. Ground-to-satellite quantum teleportation[J]. Nature, 2017, 549(7670): 70-73.

[20] Yonezawa H, Aoki T, Furusawa A. Demonstration of a quantum teleportation network for continuous variables[J]. Nature, 2004, 431(7007): 430-433.

[21] Su X L, Zhao Y P, Hao S H, et al. Experimental preparation of eight-partite cluster state for photonic qumodes[J]. Optics Letters, 2012, 37(24): 5178-5180.

[22] Yukawa M, Ukai R, Loock P V, et al. Experimental generation of four-mode continuous-variable cluster states[J]. Physical Review A, 2008, 78(1): 012301.

[23] Yokoyama S, Ukai R, Armstrong S C, et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain[J]. Nature Photonics, 2013, 7(12): 982-986.

[24] Chen M, Menicucci N C, Pfister O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb[J]. Physical Review Letters, 2014, 112(12): 120505.

[25] Bouwmeester D, Pan J W, Daniell M, et al. Observation of three photon Greenberger-Horne-Zeilinger entanglement[J]. Physical Review Letters, 1999, 82(7): 1345-1349.

[26] Lee J, Kim M S. Entanglement teleportation via Werner states[J]. Physical Review Letters, 2000, 84(18): 4236-4239.

[27] Lee J, Min H, Oh S D. Multipartite entanglement for entanglement teleportation[J]. Physical Review A, 2002, 66(5): 052318.

[28] Zheng Y Z, Gu Y J, Guo G C. Teleportation of a three-particle entangled W state[J]. Chinese Physics, 2002, 11(6): 537-542.

[29] Man Z X, Xia Y J, An N B. Economical and feasible controlled teleportation of an arbitrary unknown n-qubit entangled state[J]. Journal of Physics B, 2007, 40(10): 1767-1774.

[30] Li S S, Nie Y Y, Hong Z H, et al. Controlled teleportation using four-particle cluster state[J]. Communications in Theoretical Physics, 2008, 50(3): 633-636.

[31] Chen X B, Xu G, Yang Y X, et al. Centrally controlled quantum teleportation[J]. Optics Communications, 2010, 283(23): 4802-4809.

[32] Gao T, Yan F L, Li Y C. Optimal controlled teleportation[J]. Europhysics Letters, 2008, 84(5): 50001.

[33] Wang G M, Ying M S. Perfect many-to-one teleportation with stabilizer states[J]. Physical Review A, 2007, 77(3): 032324.

[34] Yeo Y, Chua W K. Teleportation and dense coding with genuine multipartite entanglement[J]. Physical Review Letters, 2006, 96(6): 060502.

[35] Yang C P, Chu S I, Han S Y. Efficient many-party controlled teleportation of multi-qubit quantum information via entanglement[J]. Physical Review A, 2004, 70(2): 022329.

[36] Gorbachev V N, Trubiko A I, Rodichkina A A. Teleportation and dense coding via a multiparticle quantum channel of the GHZ-class[J]. Quantum Information and Computation, 2002, 2(5): 367-378.

[37] 王中结, 阮飞, 方旭. 基于免退纠缠态的原子态隐形传输[J]. 光学学报, 2015, 35(3): 0327001.

    Wang Z J, Ruan F, Fang X. Teleportation for atomic state based on disentanglement-free state[J]. Acta Optica Sinica, 2015, 35(3): 0327001.

[38] 董锟. 量子比特间相互作用对同量子谐振腔强耦合的量子比特纠缠性质的影响[J]. 光学学报, 2016, 36(2): 0227003.

    Dong K. Effect of interaction between two qubits on qubits entanglement properties of ultra-strongly coupling quantum oscillator[J]. Acta Optica Sinica, 2016, 36(2): 0227003.

[39] Karlsson A, Bourennane M. Quantum teleportation using three-particle entanglement[J]. Physical Review A, 1998, 58(6): 4394-4400.

[40] Man Z X, Xia Y J, An N B. Genuine multiqubit entanglement and controlled teleportation[J]. Physical Review A, 2007, 75(5): 052306.

[41] He G Q, Zhang J T, Zeng G H. Teleportation of continuous variable multimode Greeberger-Horne-Zeilinger entangled states[J]. Journal of Physics B, 2008, 41(21): 215503.

[42] Ren L J, He G Q, Zeng G H. Universal teleportation via continuous-variable graph states[J]. Physical Review A, 2008, 78(4): 042302.

[43] Zhao Z, Chen Y, Zhang A, et al. Experimental demonstration of five-photon entanglement and open-destination teleportation[J]. Nature, 2004, 430(6995): 54-58.

[44] Gottesman D, Chuang I L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations[J]. Nature, 1999, 402(6760): 390-393.

[45] Hillery M, Buzek V, Berthiaume A. Quantum secret sharing[J]. Physical Review A, 1999, 59(3): 1829-1834.

[46] Scarani V, Gisin N. Quantum communication between N partners and Bell’s inequalities[J]. Physical Review Letters, 2001, 87(11): 117901.

[47] Su X L, Tan A H, Jia X J, et al. Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables[J]. Physical Review Letters, 2007, 98(7): 070502.

[48] Vahlbruch H, Mehmet M, Danzmann K, et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 2016, 117(11): 110801.

[49] Huo M R, Qin J L, Yan Z H, et al. Generation of two types of nonclassical optical states using an optical parametric oscillator with a PPKTP crystal[J]. Applied Physics Letters, 2016, 109(22): 221101.

[50] Reid M D, Drummond P D. Quantum correlations of phase in nondegenerate parametric oscillation[J]. Physical Review Letters, 1988, 60(26): 2731-2733.

[51] 靳晓丽, 苏静, 郑耀辉. 非理想平衡零拍探测系统对实测压缩度的影响[J]. 光学学报, 2016, 36(10): 1027001.

    Jin X L, Su J, Zheng Y H. Influence of the non-ideal balanced homodyne detection on the measured squeezing degree[J]. Acta Optica Sinica, 2016, 36(10): 1027001.

[52] Loock P V, Furusawa A. Detecting genuine multipartite continuous-variable entanglement[J]. Physical Review A, 2003, 67(5): 052315.

[53] Takei N, Aoki T, Koike S, et al. Experimental demonstration of quantum teleportation of a squeezed state[J]. Physical Review A, 2005, 72(4): 042304.

[54] Jia X J, Su X L, Pan Q, et al. Experimental demonstration of unconditional entanglement swapping for continuous variables[J]. Physical Review Letters, 2004, 93(25): 250503.

[55] Su X L, Tian C X, Deng X W, et al. Quantum entanglement swapping between two multipartite entangled states[J]. Physical Review Letters, 2016, 117(24): 240503.

[56] Ide T, Hofmann H F, Furusawa A, et al. Gain tuning and fidelity in continuous-variable quantum teleportation[J]. Physical Review A, 2002, 65(6): 062303.

[57] Braunstein S L, Fuchs C A, Kimble H J. Criteria for continuous-variable quantum teleportation[J]. Journal of Modern Optics, 2000, 47(2): 267-268.

[58] Grosshans F, Grangier P. Quantum cloning and teleportation criteria for continuous quantum variables[J]. Physical Review A, 2001, 64(1): 010301.

[59] Zhou Y Y, Jia X J, Li F, et al. Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal[J]. Optics Express, 2015, 23(4): 4953-4959.

孙颍榕, 霍美如, 闫智辉, 贾晓军. 基于四组分纠缠态的量子离物传态[J]. 光学学报, 2018, 38(5): 0527001. Yingrong Sun, Meiru Huo, Zhihui Yan, Xiaojun Jia. Quantum Teleportation Based on Four-Partite Entangled States[J]. Acta Optica Sinica, 2018, 38(5): 0527001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!