应用激光, 2017, 37 (6): 852, 网络出版: 2018-01-10   

铝合金激光冲击强化的三维数值模拟

Numerical Simulation of Laser Shock Processing in 2024 Aluminum Alloy
作者单位
燕山大学 河北省重型装备与大型结构力学可靠性重点实验室, 河北 秦皇岛 066004
引用该论文

李博民, 刘新民, 张晖辉, 刘峰. 铝合金激光冲击强化的三维数值模拟[J]. 应用激光, 2017, 37(6): 852.

Li Bomin, Liu Xinmin, Zhang Huihui, Liu Feng. Numerical Simulation of Laser Shock Processing in 2024 Aluminum Alloy[J]. APPLIED LASER, 2017, 37(6): 852.

参考文献

[1] CHU J P, RIGSBEE J M, BANAS G, et al.Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel[J].Materials Science and Engineering, 1999, A(260): 260-268.

[2] CHARLES S MONTROSS, TAO WEI, LIN YE, et al.Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J].International Journal of Fatigue, 2002, 24(10): 1021-1036.

[3] RUBIO-GONZALEZ C, OCANA J L, GOMEZ-ROSAS G, et al.Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy[J].Material Science and Engineering A, 2004(386): 291-295.

[4] 龙芋宏, 李雪梅, 邹登峰, 等.微尺度激光冲击强化的影响因素分析[J].应用激光, 2011(2): 120-123.

[5] 曹子文, 车志刚, 邹世坤, 等.激光冲击强化对7050铝合金紧固孔疲劳性能的影响[J].应用激光, 2013(3): 259-262.

[6] 熊竻琦, 陈东林, 何卫锋, 等.有限元数值仿真在激光冲击强化中的研究与应用[J].应用激光, 2010(4): 310-313.

[7] 杨建风, 周建忠, 冯爱新.激光冲击强化区的残余应力测试分析[J].应用激光, 2006(3): 157-159.

[8] 唐振州, 姜银方, 李志飞, 等.光斑模型对激光冲击成形性能的影响[J].制造技术与机床, 2011(10): 101-104.

[9] BRAISTED W, BROCKMAN R.Finite element simulation of laser shock peening[J].International Journal of Fatigue, 1999, 21(7): 719-724.

[10] 张兴权, 章艳, 段士伟, 等.圆杆在激光冲击作用下动态响应的数值模拟[J].中国激光, 2015(9): 150-156.

[11] HU YONGXIANG, YAO ZHENQIANG, HU JUN.Numerical simulation of residual stress field for laser shock processing[J].Chinese J Lasers, 2006, 33(6): 846-851.

[12] 张永康, 周立春, 任旭东, 等.激光冲击TC4残余应力场的试验及有限元分析[J].江苏大学学报(自然科学版), 2009, 30(1): 10-13.

[13] 冯爱新, 聂贵锋, 薛伟, 等.2024铝合金薄板激光冲击波加载的实验研究[J].金属学报, 2012(2): 205-210.

[14] FABBRO R, FOURNIER J, BALLARD P, et al.Physical study of laser-produced plasma in confined geometry[J].Journal of Applied Physics, 1990, 68(2): 775-784.

[15] YANG C H, HODGSON P D, LIU Q C, et al.Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening[J].Journal of Materials Processing Technology, 2008, 201(1): 303-309.

[16] ZHANG W, YAO Y L, NOYAN I C.Microscale laser shock peening of thin films, part 1: experiment, modeling and simulation[J].Journal of Manufacturing Science & Engineering, 2004, 126(1): 10-17.

[17] HONG X, WANG S B, GUO D H, et al.Confining medium and absorptive overlay: Their effects on a laser-induced shock wave[J].Optics and Lasers in Engineering, 1998, 29(6): 447-455.

[18] JOHNSON G R, COOK W H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures: Proceedings of the 7th International Symposium on Ballistics[C].[S.I.]: [s.n.], 1983(21): 541-547.

[19] 姜银方, 来彦玲, 张磊, 等.激光冲击材料表面“残余应力洞”形成规律与分析[J].中国激光, 2010(8): 2073-2079.

[20] 曹宇鹏, 周东呈, 冯爱新, 等.激光冲击7050铝合金薄板试样形成残余应力洞的机制[J].中国激光, 2016(11): 84-93.

[21] PEYREP, FABBRO R, MERRIEN P, et al.Laser shock processing of aluminum alloys: Application to high cycle fatigue behavior[J].Materials Science and Engineering, 1996, 210(1-2): 102-113.

[22] 李志勇, 朱文辉, 程经毅, 等.实验研究脉冲强激光在铝靶中诱导的冲击波[J].中国激光, 1997(3): 68-71.

[23] 吴先前, 黄晨光, 宋宏伟.激光冲击强化诱导的残余应力影响因素分析[J].中国激光, 2010(10): 2632-2637.

李博民, 刘新民, 张晖辉, 刘峰. 铝合金激光冲击强化的三维数值模拟[J]. 应用激光, 2017, 37(6): 852. Li Bomin, Liu Xinmin, Zhang Huihui, Liu Feng. Numerical Simulation of Laser Shock Processing in 2024 Aluminum Alloy[J]. APPLIED LASER, 2017, 37(6): 852.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!