激光技术, 2018, 42 (5): 673, 网络出版: 2018-09-11   

固体自喇曼黄光激光器研究进展

Research progress of solid-state self-Raman yellow lasers
作者单位
陆军工程大学石家庄校区 电子与光学工程系, 石家庄 050003
引用该论文

伍锡山, 张鹏, 刘彬, 龙江雄. 固体自喇曼黄光激光器研究进展[J]. 激光技术, 2018, 42(5): 673.

WU Xishan, ZHANG Peng, LIU Bin, LONG Jiangxiong. Research progress of solid-state self-Raman yellow lasers[J]. Laser Technology, 2018, 42(5): 673.

参考文献

[1] JONES K J. Progress in Na laser guide star adaptive optics and le-ssons learned[J].Proceedings of the SPIE, 2016,9950: 995011.

[2] SADICK N S, WEISS R. The utilization of a new yellow light laser (578nm) for the treatment of class I red telangiectasia of the lower extremities [J]. Dermatologic Surgery, 2002, 28(1): 21-25.

[3] KAPOOR V, KARPOV V, LINTON C, et al. Solid state yellow and orange lasers for flow cytometry[J]. Cytometry Part, 2008, A73(6): 570-577.

[4] YUAN Y Zh, LI B, GUO X Y. Laser diode pumped Nd∶YAG crystals frequency summing 589nm yellow laser[J]. Optik—International Journal for Light and Electron Optics, 2016, 127(2): 710-712.

[5] LIU Y, LIU Z, CONG Z, et al. Quasi-continuous-wave 589nm radiation based on intracavity frequency-doubled Nd∶GGG/BaWO4, Raman laser[J]. Optics & Laser Technology, 2016, 81(28): 184-188.

[6] FENG Y, CALIA D B, HACKENBERG W, et al. Design of a narrow band 589nm laser by direct Raman shift in single mode fiber[J]. Proceedings of the SPIE, 2006,6272: 62724A.

[7] LEE A J, PASK H M, OMATSU T, et al. All-solid-state continuous-wave yellow laser based on intracavity frequency-doubled self-Raman laser action[J]. Applied Physics, 2007, B88(4): 539-544.

[8] WOODBURY E J, NG W K. Ruby laser operation in near IR[J]. Proceedings of the Institute of Radio Engineers, 1962, 50(11): 2367.

[9] PIPER J A, PASK H M. Crystalline Raman lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 692-704.

[10] PASK H M. The design and operation of solid-state Raman lasers [J]. Progress in Quantum Electronics, 2003, 27(1): 3-56.

[11] INNOCENZI M E, YURA H T, FINCHER C L, et al. Thermal modeling of continuous-wave end-pumped solid-state lasers [J]. App-lied Physics Letters, 1990, 56(19): 1831-1833.

[12] KAMINSKII A A, UEDA K I, EICHLER H J, et al. Tetragonal vanadates YVO4 and GdVO4-new efficient χ(3)-materials for Raman lasers[J]. Optics Communications, 2001, 194(1): 201-206.

[13] CHEN Y F. Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd∶YVO4 crystal.[J]. Optics Le-tters, 2004, 29(18): 2172-2174.

[14] CHEN Y F. Efficient subnanosecond diode-pumped passively Q-switched Nd∶YVO4 self-stimulated Raman laser [J]. Optics Le-tters, 2004, 29(11): 1251-1253.

[15] CHEN Y F. High-power diode-pumped actively Q-switched Nd∶YVO4 self-Raman laser: influence of dopant concentration[J]. Optics Letters, 2004, 29(16): 1915-1917.

[16] CHEN Y F. Efficient 1521nm Nd∶GdVO4 Raman laser [J]. Optics Letters, 2004, 29(22): 2632-2635.

[17] CHEN Y F. Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd∶GdVO4 laser [J]. Applied Physics, 2004, B78(6): 685-687.

[18] JIANG P, DING X, LI B, et al. 9.80W and 0.54mJ actively Q-switched Nd∶YAG/Nd∶YVO4 hybrid gain intracavity Raman laser at 1176nm[J]. Optics Express, 2017, 25(4): 3387-3393.

[19] WU J, WU Sh F, ZHANG G, et al. The influence of stree birefringence on output power of Nd∶YVO4[J].Laser Technology, 2005, 29(6): 649-651(in Chinese).

[20] DONG W W, LI L, SHI P, et al. Thermal effect of Nd∶GdVO4 crystal end-pumped by fiber coupled diode laser.[J]. Laser Technology, 2009, 33(6): 633-637(in Chinese).

[21] DEKKER P, PASK H M, SPENCE D J, et al. Continuous-wave, intracavity doubled, self-Raman laser operation in Nd∶GdVO4 at 586.5nm[J]. Optics Express, 2007, 15(11): 7038-7046.

[22] LEE A J, PASK H M, OMATSU T, et al. All-solid-state continuous-wave yellow laser based on intracavity frequency-doubled self-Raman laser action[J]. Applied Physics, 2007, B88(4): 539-544.

[23] LEE A J, PASK H M, DEKKER P, et al. High efficiency, multi-watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd∶GdVO4[J]. Optics Express, 2008, 16(26): 21958-21963.

[24] LEE A J, PASK H M, SPENCE D J, et al. Efficient 5.3W CW laser at 559nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd∶GdVO4 laser.[J]. Optics Letters, 2010, 35(5): 682-684.

[25] L Y F, CHENG W B, XIONG Z, et al. Efficient CW laser at 559nm by intracavity sum-frequency mixing in a self-Raman Nd∶YVO4, laser under direct 880nm diode laser pumping[J]. Laser Physics Letters, 2010, 7(11): 787-789.

[26] L Y F, ZHANG X H, LI Sh T, et al. All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+∶LuVO4 crystal[J]. Optics Letters, 2010, 35(17): 2964-2966.

[27] LEE A J, SPENCE D J, PIPER J A, et al. A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible[J]. Optics Express, 2010, 18(19): 20013-20018.

[28] XIA J,L Y F,ZHANG X H,et al. All-solid-state CW Nd∶KGd(WO4)2 self-Raman laser at 561nm by intracavity sum-frequency mixing of fundamental and first-Stokes wavelengths[J]. Laser Physics Letters, 2011, 8(1): 21-23.

[29] ZHU H Y, ZHANG G, DUAN Y M, et al. Compact continuous-wave Nd∶YVO4 laser with self-raman conversion and sum frequency generation[J]. Chinese Physics Letters, 2011, 28(5): 054202.

[30] ANDREW J L, HELEN M P, JAMES A P, et al. Efficient, miniature, CW yellow source based on an intracavity frequency-doubled Nd∶YVO4 self-Raman laser[J]. Optics Letters, 2011, 36(8): 1428-1430.

[31] LEE A J, PASK H M, PIPER J A, et al. 330mW CW yellow emi-ssion from miniature self-Raman laser based on direct HR-coated Nd∶YVO4 crystal[C]//Conference on Lasers and Electro-Optics/Pacific Rim. New York,USA: IEEE, 2011: 1250-1252.

[32] LI X L, PASK H M, LEE A J, et al. Miniature wavelength-selectable Raman laser: new insights for optimizing performance[J]. Optics Express, 2011, 19(25): 25623-25631.

[33] LIN J, PASK H M. Nd∶GdVO4 self-Raman laser using double-end polarised pumping at 880nm for high power infrared and visible output[J]. Applied Physics, 2012, B108(1): 17-24.

[34] LI X, LEE A J, HUO Y, et al. Managing SRS competition in a miniature visible Nd∶YVO4/BaWO4 Raman laser[J]. Optics Express, 2012, 20(17): 19305-19312.

[35] TAN Y, FU X H, ZHAI P, et al. An efficient CW laser at 560nm by intracavity sum-frequency mixing in a self-Raman Nd∶LuVO4 laser[J]. Laser Physics, 2013, 23(4): 045806.

[36] DUAN Y M, ZHU H Y, FENG Zh R, et al. Laser diode end-pumped Nd∶YVO4 self-Raman laser at 559nm with sum-frequency mixing[J]. Chinese Journal of Lasers, 2013, 40(5): 0502002(in Chinese).

[37] KORES C C, PASK H M, NETO J J, et al. Continuous yellow-orange laser based on a diode-side-pumped Nd3+∶YVO4 self-Raman laser[C]// Advanced Solid State Lasers. Berlin,Germany: Optical Society of America, 2015: ATh2A.17 .

[38] DEMIDOVICH A A, GRABTCHIKOV A S, LISINETSKII V A, et al. Continuous-wave Raman generation in a diode-pumped Nd3+∶KGd(WO4)2 laser[J]. Optics Letters, 2005, 30(13): 1701-1703.

[39] SHANG C. Research on intra-cavity double frequency and Q-switched Nd∶YVO4 self-Raman laser at 588nm in-band pumped under 880nm[D].Tianjin: Tianjin University, 2014: 1-22(in Chin-ese).

[40] SU F F, ZHANG X Y, WANG Q P, et al. Diode pumped actively Q-switched Nd∶YVO4 self-Raman laser[J]. Journal of Physics, 2006, D39(10): 2090.

[41] DING Sh H, ZHANG X Y, WANG Q P, et al. Theoretical and experimental study on the self-Raman laser with Nd∶YVO4 crystal[J]. IEEE Journal of Quantum Electronics, 2006, D42(9): 927-933.

[42] DING Sh H, ZHANG X Y, WANG Q P, et al. Numerical modelling of passively Q-switched intracavity Raman lasers[J]. Journal of Physics, 2007, D40(9): 2736.

[43] DING Sh H, ZHANG X Y, WANG Q P, et al. Modeling of actively Q-switched intracavity Raman lasers[J]. IEEE Journal of Quantum Electronics, 2007, 43(8): 722-729.

[44] DING S, WANG P, QING X, et al. Analysis of actively Q-switched intracavity frequency-doubled solid-state yellow Raman lasers [J]. Applied Physics, 2011,B104(4): 819-827.

[45] LIU Y N. Theoretical and experimental study on LD pumped pa-ssively Q-switched intracavity frequency-doubled Raman yellow laser [D]. Yantai: Yantai University, 2012: 1-11(in Chinese).

[46] LIU B, ZHANG X Y, WANG Q P, et al. Diode-pumped intracavity frequency-double Nd∶YVO4 self-Raman yellow laser[J]. Acta Photonica Sinica, 2007, 36(10): 1777-1780(in Chinese).

[47] ZHU H Y, DUAN Y M, ZHANG G, et al. Yellow-light generation of 5.7W by intracavity doubling self-Raman laser of YVO4/Nd∶YVO4 composite[J]. Optics Letters, 2009, 34(18): 2763-2765.

[48] ZHU H Y, DUAN Y M, ZHANG G, et al. Efficient second harmonic generation of double-end diffusion-bonded Nd∶YVO4 self-Raman laser producing 7.9W yellow light[J]. Optics Express, 2009, 17(24): 21544-21550.

[49] OMATSU T, LEE A, PASK H M, et al. Passively Q-switched yellow laser formed by a self-Raman composite Nd∶YVO4 /YVO4, crystal[J]. Applied Physics, 2009, B97(4): 799-804.

[50] ZHU H Y, ZHANG G, ZHANG Y J, et al. LD end-pumped c-cut Nd∶YVO4 laser at 589nm generated by self-Raman conversion and frequency doubling[J]. Acta Physica Sinica, 2011, 60(9): 373-377(in Chinese).

[51] GUO Y Y, ZHANG L, HUANG G, et al. High-power diode-end-pumped composite YVO4/Nd∶YVO4/YVO4, self-Raman yellow laser[C]//Communications and Photonics Conference and Exhibition. New York,USA: IEEE, 2011: 1-6.

[52] DU Ch L, GUO Y Y, YU Y Q, et al. High power Q-switched intracavity sum-frequency generation and self-Raman laser at 559nm[J]. Optics & Laser Technology, 2013, 47(7): 43-46.

[53] SU F F, ZHANG X Y, WANG W T, et al. Diode-pumped intracavity yellow-green Raman laser at 560nm with sum-frequency-generation [J]. Optics & Laser Technology, 2015,66(6): 122-124.

[54] SHEN G, LI Z H, HAN M. Fabrication of narrow pulse passively Q-switched self-stimulated Raman laser with c-cut Nd∶GdVO4[J]. Optoelectronics Letters, 2016, 12(6): 430-432.

[55] SPENCE D E, KEAN P N, SIBBETT W. 60-fsec pulse generation from a self-mode-locked Ti∶sapphire laser[J]. Optics Letters, 1991, 16(1): 42-44.

[56] PENG J Y, ZHENG Y, ZHENG K, et al. Passively Q-switched mode locking in a compact Nd∶GdVO4/Cr∶YAG self-Raman laser[J]. Optics Communications, 2012, 285(24): 5334-5336.

[57] LI Z H, PENG J Y, YAO J Q, et al. Efficient self-stimulated Raman scattering with simultaneously self-mode-locking in a diode-pumped Nd∶GdVO4 laser[J]. Applied Optics, 2016, 55(32): 9000-9005.

[58] LI Z H, PENG J Y, YAO J Q, et al. The characteristics of Kerr-lens mode-locked self-Raman Nd∶YVO4, 1176nm laser[J]. Optics & Laser Technology, 2017, 89(1): 1-5.

伍锡山, 张鹏, 刘彬, 龙江雄. 固体自喇曼黄光激光器研究进展[J]. 激光技术, 2018, 42(5): 673. WU Xishan, ZHANG Peng, LIU Bin, LONG Jiangxiong. Research progress of solid-state self-Raman yellow lasers[J]. Laser Technology, 2018, 42(5): 673.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!