光子学报, 2019, 48 (11): 1148008, 网络出版: 2019-12-10   

回音壁模式光学微腔器件的封装与集成

Packaging and Integration of Whispering Gallery Modes Optical Microcavity Devices
作者单位
1 哈尔滨工程大学 理学院 纤维集成光学教育部重点实验室, 哈尔滨 150001
2 深圳大学 光电工程学院 光电子器件与系统重点实验室,广东 深圳 518060
引用该论文

王鹏飞, 李昂震. 回音壁模式光学微腔器件的封装与集成[J]. 光子学报, 2019, 48(11): 1148008.

WANG Peng-fei, LI Ang-zhen. Packaging and Integration of Whispering Gallery Modes Optical Microcavity Devices[J]. ACTA PHOTONICA SINICA, 2019, 48(11): 1148008.

参考文献

[1] VAHALA K J. Optical microcavities[J]. Nature, 2003, 424(6950): 839-846.

[2] BERNESCHI S, FARNESI D, COSI F, et al. High Q silica microbubble resonators fabricated by arc discharge[J]. Optics Letters, 2011, 36(17): 3521-3523.

[3] GRUDININ I S, ILCHENKO V S, MALEKI L. Ultrahigh optical Q factors of crystalline resonators in the linear regime[J]. Physical Review A, 2006, 74(6): 063806.

[4] ILCHENKO V S, GORODETSKY M L, YAO X S, et al. Microtorus: a high-finesse microcavity with whispering-gallery modes[J]. Optics Letters, 2001, 26(5): 256-258.

[5] GU Fu-xing, XIE Fu-ming, LIN Xing, et al. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering[J]. Light: Science & Applications, 2017, 6: e17061.

[6] ARMANI A M, KULKARNI R P, FRASER S E, et al. Label-free, single-molecule detection with optical microcavities[J]. Science, 2007, 317(5839): 783-787.

[7] LI Ang-zhen, YU Ji-bo, ZHANG Meng, et al. An Yb3+-Ho3+ codoped glass microsphere laser in the 2.0 μm wavelength regions[J]. IEEE Photonics Technology Letters, 2018, 30(17): 1543-1546.

[8] LI Ang-zhen, ZHANG Ji-quan, ZHANG Meng, et al. Effect of Tm3+ concentration on the emission wavelength shift in Tm3+-doped silica microsphere lasers[J]. Optics Letters, 2018, 43(18): 4325-4328.

[9] YANG Zheng-sheng, WU Yue-hao, ZHANG Xing-di, et al. Low temperature fabrication of chalcogenide microsphere resonators for thermal sensing[J]. IEEE Photonics Technology Letters, 2017, 29(1): 66-69.

[10] SHITIKOV A E, BILENKO I A, KONDRATIEV N M, et al. Billion Q-factor in silicon WGM resonators[J]. Optica, 2018, 5(12): 1525-1528.

[11] TA V D, CAIXEIRO S, FERNANDES F M., et al. Microsphere solid-state biolasers[J]. Advanced Optical Materials, 2017, 5(8): 1601022.

[12] TASAKI R, HIGASHIHATA M, SUWA A, et al. High-speed observation of semiconductor microsphere generation by laser ablation in the air[J]. Applied Physics A, 2018, 124(2): 161.

[13] SUMETSKY M, DULASHKO Y, WINDELER R S. Optical microbubble resonator[J]. Optics Letters, 2010, 35(7): 898-900.

[14] XIAO Yun-feng, DONG Chun-hua, ZOU Chang-ling, et al. Low-threshold microlaser in a high-Q asymmetrical microcavity[J]. Optics Letters, 2009, 34(4): 509-511.

[15] KNIGHT J C, CHEUNG G, JACQUES F, et al. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper[J]. Optics Letters, 1997, 22(15): 1129-1131.

[16] CAI M, PAINTER O, VAHALA K J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system[J]. Physical Review Letters, 2000, 85(1): 74-77.

[17] SONG Qing-hai, GE Li, REDDING B, et al. Channeling chaotic rays into waveguides for efficient collection of microcavity emission[J]. Physical Review Letters, 2012, 108(24): 243902.

[18] LIU Shuai, GU Zhi-yuan, ZHANG Nan, et al. End-fire injection of guided light into optical microcavity[J]. Applied Physics B, 2015, 120(2): 255-260.

[19] LIU Shuai, SUN Wen-zhao, WANG Yu-jie, et al. End-fire injection of light into high-Q silicon microdisks[J]. Optica, 2018, 5(5): 612-616.

[20] VOLLMER F, ARNOLD S, KENG D. Single virus detection from the reactive shift of a whispering-gallery mode[J]. PNAS, 2008, 105(52): 20701-20704.

[21] XU Ying-lun, TANG Shui-jing, YU Xiao-chong, et al. Mode splitting induced by an arbitrarily shaped Rayleigh scatterer in a whispering-gallery microcavity[J]. Physical Review A, 2018, 97(6): 063828.

[22] SHAO Lin-bo, JIANG Xue-feng, YU Xiao-chong, et al. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening[J]. Advanced Materials, 2013, 25(39): 5616-5620.

[23] DUMEIGE Y, TREBAOL S, GHI瘙塁A L, et al. Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers[J]. Journal of the Optical Society of America B, 2008, 25(12): 2073-2080.

[24] ROSENBLUM S, LOVSKY Y, ARAZI L, et al. Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators[J]. Nature Communications, 2015, 6(1) : 6788-6792.

[25] YE Ming-yong, SHEN Mei-xia, LIN Xiu-min. Ringing phenomenon based whispering-gallery-mode sensing[J]. Scientific Reports, 2016, 619597.

[26] SANDOGHDAR V, TREUSSART F, HARE J, et al. Very low threshold whispering-gallery-mode microsphere laser[J]. Physical review A, 1996, 54(3): R1777-R1780.

[27] MIURA K, TANAKA K, HIRAO K. Laser oscillation of a Nd3+-doped fluoride glass microsphere[J]. Journal of Materials Science Letters, 1996, 15(21): 1854-1857.

[28] PENG X, SONG Feng, JIANG Shi-bin, et al. Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser[J]. Applied Physics Letters, 2003, 82(10): 1497-1499.

[29] MESCIA L, BIA P, LOSITO O, et al. Design of Mid-IR Er3+-doped microsphere laser[J]. IEEE Photonics Journal, 2013, 5(4): 8.

[30] DENG Y, JAIN R K, MANI M Z. Demonstration of a cw room temperature mid-IR microlaser[J]. Optics Letters, 2014, 39(15): 4458-4461.

[31] WANG Xin, YU Yong-ze, WANG Shun-bin, et al. Single mode green lasing and multicolor luminescent emission from an Er3+-Yb3+ co-doped compound fluorosilicate glass microsphere resonator[J]. OSA Continuum, 2018, 1(1): 261-273.

[32] LI Ang-zhen, LI Wen-hao, ZHANG Meng, et al. Tm3+-Ho3+ codoped tellurite glass microsphere laser in the 1.47 μm wavelength region[J]. Optics Letters, 2019, 44(3): 511-513.

[33] LI Ang-zhen, ZHANG Meng, WANG Xin, et al. Directly pumped Ho3+-doped microspheres lasing at 2.0 μm[J]. IEEE Photonics Technology Letters, 2019, 31(16): 1366-1368.

[34] OUYANG Tian-chang, KANG Shi-liang, ZHANG Zhi-shen, et al. Microlaser output from rare-earth Ion-doped nanocrystal-in-glass microcavities[J]. Advanced Optical Materials, 2019, 1(1): 1900197.

[35] SPILLANE S M, KIPPENBERG T J, VAHALA K J. Ultralow-threshold Raman laser using a spherical dielectric microcavity[J]. Nature, 2002, 415(6872): 621-623.

[36] GUO Chang-lei, CHE Kai-jun, CAI Zhi-ping, et al. Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation[J]. Optics Letters, 2015, 40(21): 4971-4974.

[37] FANG Zai-jin, CHORMAIC S N, WANG Shan-yu, et al. Bismuth-doped glass microsphere lasers[J]. Photonics Research, 2017, 5(6): 740-744.

[38] PELTON M, YAMAMOTO Y. Ultralow threshold laser using a single quantum dot and a microsphere cavity[J]. Physical Review A, 1999, 59(3): 2418-2421.

[39] SHOPOVA S I, FARCA G, ROSENBERGER A T, et al. Microsphere whispering-gallery-mode laser using HgTe quantum dots[J]. Applied Physics Letters, 2004, 85(25): 6101-6103.

[40] MIN B, KIM S, OKAMOTO K, et al. Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers[J]. Applied Physics Letters, 2006, 89(19): 191124.

[41] BRAGINSKY V B, GORODETSKY M L, ILCHENKO V S. Quality-factor and nonlinear properties of optical whispering-gallery modes[J]. Physics Letters A, 1989, 137(7): 393-397.

[42] GUO Chang-lei, CHE Kai-jun, ZHANG Pan, et al. Low-threshold stimulated Brillouin scattering in high-Q whispering gallery mode tellurite microspheres[J]. Optics Express, 2015, 23(25): 32261-32266.

[43] DAYAN B, PARKINS A S, AOKI T, et al. A Photon turnstile dynamically regulated by one atom[J]. Science, 2008, 319(5866): 1062.

[44] MA R, SCHLIESSER A, DEL'HAYE P, et al. Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres[J]. Optics Letters, 2007, 32(15): 2200-2202.

[45] WARD J M, FERON P, CHORMAIC S N. A taper-fused microspherical laser source[J]. IEEE Photonics Technology Letters, 2008, 20(6): 392-394.

[46] YAN Ying-zhan, ZOU Chang-ling, YAN Shu-bin, et al. Packaged silica microsphere-taper coupling system for robust thermal sensing application[J]. Optics Express, 2011, 19(7): 5753-5759.

[47] WANG Peng-fei, DING Ming, LEE T, et al. Packaged chalcogenide microsphere resonator with high Q-factor[J]. Applied Physics Letters, 2013, 102(13): 131110.

[48] MONIFI F, ZDEMIR S K, FRIEDLEIN J, et al. Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix[J]. IEEE Photonics Technology Letters, 2013, 25(15): 1458-1461.

[49] WANG Peng-fei, DING Ming, MURUGAN G S, et al. Packaged, high-Q, microsphere-resonator-based add-drop filter[J]. Optics Letters, 2014, 39(17): 5208-5211.

[50] DONG Yong-chao, WANG Ke-yi, JIN Xue-ying. Packaged microsphere-taper coupling system with a high Q factor[J]. Applied Optics, 2015, 54(2): 277-284.

[51] ZHAO Guang-ming, ZDEMIR 瘙塁 K, WANG Tao, et al. Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallery-mode microresonator[J]. Science Bulletin, 2017, 62(12): 875-878.

[52] QAVI A J, LIAO J, DONG R, et al. Packaged microbubble resonators as a robust field sensing device[C]. SPIE, 2019, 10895: 108950O.

[53] FRANCOIS A, ROWLAND K J, MONRO T M. Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber[J]. Applied Physics Letters, 2011, 99(14): 141111.

[54] KOSMA K, ZITO G, SCHUSTER K, et al. Whispering gallery mode microsphere resonator integrated inside a microstructured optical fiber[J]. Optics Letters, 2013, 38(8): 1301-1303.

[55] ZHANG Xiao-bei, YANG Yong, BAI Hua-wen, et al. Theoretical aspects and sensing demonstrations of cone-shaped inwall capillary-based microsphere resonators[J]. Photonics Research, 2017, 5(5): 516-520.

[56] WANG Jia-wei, ZHANG Xiao-bei, YAN Ming, et al. Embedded whispering-gallery mode microsphere resonator in a tapered hollow annular core fiber[J]. Photonics Research, 2018, 6(12): 1124-1129.

[57] ZHANG Meng, YANG Wen-lei, TIAN Ke, et al. In-fiber whispering-gallery mode microsphere resonator-based integrated device[J]. Optics Letters, 2018, 43(16): 3961-3964.

[58] ZHANG Meng, LI Ang-zhen, YU Ji-bo, et al. In-fiber temperature sensor based on green up-conversion luminescence in an Er3+-Yb3+co-doped tellurite glass microsphere[J]. Optics Letters, 2019, 44(13): 3214-3217.

[59] CHAO C Y, GUO L J. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance[J]. Applied Physics Letters, 2003, 83(8): 1527-1529.

[60] KIPPENBERG T J, SPILLANE S M, ARMANI D K, et al. Fabrication and coupling to planar high-Q silica disk microcavities[J]. Applied Physics Letters, 2003, 83(4): 797-799.

[61] ARMANI D K, KIPPENBERG T J, SPILLANE S M, et al. Ultra-high-Q toroid microcavity on a chip[J]. Nature, 2003, 421(1): 925-928.

[62] ALMEIDA V R, BARRIOS C A, PANEPUCCI R R, et al. All-optical control of light on a silicon chip[J]. Nature, 2004, 431(7012): 1081-1084.

[63] LIU Zhao-pei, LI Yan, XIAO Yun-feng, et al. Direct laser writing of whispering gallery microcavities by two-photon polymerization[J]. Applied Physics Letters, 2010, 97(21): 211105.

[64] GROSSMANN T, SCHLEEDE S, HAUSER M, et al. Direct laser writing for active and passive high-Q polymer microdisks on silicon[J]. Optics Express, 2011, 19(12): 11451-11456.

[65] LEE H, CHEN T, LI Jiang, et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip[J]. Nature Photonics, 2012, 6(1): 369-373.

[66] YANG Lan, CARMON T, MIN B, et al. Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process[J]. Applied Physics Letters, 2005, 86(9): 091114.

[67] FAN Hui-bo, HUA Shi-yue, JIANG Xiao-shun, et al. Demonstration of an erbium-doped microsphere laser on a silicon chip[J]. Laser Physics Letters, 2013, 10(10): 105809.

[68] YANG Ding, FAN Hui-bo, ZHANG Xun, et al. Ultralow-threshold neodymium-doped microsphere lasers on a silicon chip[J]. Optics Communications, 2017, 395(1): 51-54.

[69] LIANG Wei, ILCHENKO V S, SAVCHENKOV A A, et al. Resonant microphotonic gyroscope[J]. Optica, 2017, 4(1): 114-117.

[70] LI Jiang, SUH M G, VAHALA K J. Microresonator Brillouin gyroscope[J]. Optica, 2017, 4(3): 346-348.

[71] XU Xiang-yi, CHEN Wei-jian, ZHAO Guang-ming, et al. Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping[J]. Light: Science & Applications, 2018, 7(1): 62.

[72] CARLBORG C F, GYLFASON K B, KAZMIERCZAK A, et al. A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips[J]. Lab on a Chip, 2010, 10(3): 281-290.

[73] WONDIMU S F, VON D E S, AHRENS R, et al. Integration of digital microfluidics with whispering-gallery mode sensors for label-free detection of biomolecules[J]. Lab on a Chip, 2017, 17(10): 1740-1748.

王鹏飞, 李昂震. 回音壁模式光学微腔器件的封装与集成[J]. 光子学报, 2019, 48(11): 1148008. WANG Peng-fei, LI Ang-zhen. Packaging and Integration of Whispering Gallery Modes Optical Microcavity Devices[J]. ACTA PHOTONICA SINICA, 2019, 48(11): 1148008.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!