Photonics Research, 2016, 4 (5): 05000187, Published Online: Nov. 23, 2016  

Probing the fractional topological charge of a vortex light beam by using dynamic angular double slits Download: 926次

Author Affiliations
1 Laboratory of Quantum Information and Quantum Optoelectronic Devices, Shaanxi Province, Xian Jiaotong University, Xian 710049, China
2 Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Science, Hefei 230026,China
Copy Citation Text

Jing Zhu, Pei Zhang, Dongzhi Fu, Dongxu Chen, Ruifeng Liu, Yingnan Zhou, Hong Gao, Fuli Li. Probing the fractional topological charge of a vortex light beam by using dynamic angular double slits[J]. Photonics Research, 2016, 4(5): 05000187.

References

[1] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 1992, 45: 8185-8189.

[2] S. J. van Enk, G. Nienhuis. Eigenfunction description of laser beams and orbital angular momentum of light. Opt. Commun., 1992, 94: 147-158.

[3] S. Franke-Arnold, L. Allen, M. Padgett. Advances in optical angular momentum. Laser Photon. Rev., 2008, 2: 299-313.

[4] K. Dholakia, T. Čižmár. Shaping the future of manipulation. Nat. Photonics, 2011, 5: 335-342.

[5] H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett., 1995, 75: 826-829.

[6] N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett., 1997, 22: 52-54.

[7] M. J. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 2011, 5: 343-348.

[8] D. G. Grier. A revolution in optical manipulation. Nature, 2003, 424: 810-816.

[9] G. Gibson, J. Courtial, M. J. Padgett. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 2004, 12: 5448-5456.

[10] J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 2012, 6: 488-496.

[11] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340: 1545-1548.

[12] A. Mair, A. Vaziri, G. Weihs, A. Zeilinger. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412: 313-316.

[13] G. Molina-Terriza, J. P. Torres, L. Torner. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett., 2001, 88: 013601.

[14] J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, M. J. Padgett. Quantum correlations in optical angle-orbital angular momentum variables. Science, 2010, 329: 662-665.

[15] J. E. Curtis, D. G. Grier. Structure of optical vortices. Phys. Rev. Lett., 2003, 90: 133901.

[16] S. Fürhapter, A. Jesacher, S. Bernet, M. Ritsch-Marte. Spiral phase contrast imaging in microscopy. Opt. Express, 2005, 13: 689-694.

[17] B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, M. J. Padgett. Holographic ghost imaging and the violation of a bell inequality. Phys. Rev. Lett., 2009, 103: 083602.

[18] M. V. Berry. Optical vortices evolving from helicoidal integer and fractional phase steps. J. Opt. A, 2004, 6: 259-268.

[19] J. Leach, E. Yao, M. J. Padgett. Observation of the vortex structure of a non-integer vortex beam. New J. Phys., 2004, 6: 71.

[20] S. S. R. Oemrawsingh, A. Aiello, E. R. Eliel, G. Nienhaus, J. P. Woerdman. How to observe high-dimensional two-photon entanglement with only two detectors. Phys. Rev. Lett., 2004, 92: 217901.

[21] A. Aiello, S. S. R. Oemrawsingh, E. R. Eliel, J. P. Woerdman. Nonlocality of high-dimensional two-photon orbital angular momentum states. Phys. Rev. A, 2005, 72: 052114.

[22] J. B. Götte, K. O’Holleran, D. Preece, F. Flossmann, S. Franke-Arnold, S. M. Barnett, M. J. Padgett. Light beams with fractional orbital angular momentum and their vortex structure. Opt. Express, 2008, 16: 993-1006.

[23] S. Tao, J. Lin, X. Peng. Fractional optical vortex beam induced rotation of particles. Opt. Express, 2005, 13: 7726-7731.

[24] C.-S. Guo, Y.-N. Yu, Z. Hong. Optical sorting using an array of optical vortices with fractional topological charge. Opt. Commun., 2010, 283: 1889-1893.

[25] G. Situ, G. Pedrini, W. Osten. Spiral phase filtering and orientation-selective edge detection/enhancement. J. Opt. Soc. Am. A, 2009, 26: 1788-1797.

[26] G. Situ, M. Warber, G. Pedrini, W. Osten. Phase contrast enhancement in microscopy using spiral phase filtering. Opt. Commun., 2010, 283: 1273-1277.

[27] S. S. R. Oemrawsingh, J. A. de Jong, X. Ma, A. Aiello, E. R. Eliel, G. W. ’t Hooft, J. P. Woerdman. High-dimensional mode analyzers for spatial quantum entanglement. Phys. Rev. A, 2006, 73: 032339.

[28] G. F. Calvo, A. Picón, A. Bramon. Measuring two-photon orbital angular momentum entanglement. Phys. Rev. A, 2007, 75: 012319.

[29] X. Li, Y. Tai, Z. Nie, H. Wang, H. Li, J. Wang, J. Tang, Y. Wang. Fraunhofer diffraction of Laguerre-Gaussian beam caused by a dynamic superposed dual-triangular aperture. Opt. Eng., 2015, 54: 123113.

[30] A. Mourka, J. Baumgartl, C. Shanor, K. Dholakia, E. M. Wright. Visualization of the birth of an optical vortex using diffraction from a triangular aperture. Opt. Express, 2011, 19: 5760-5771.

[31] J. Zhou, W. Zhang, L. Chen. Experimental detection of high-order or fractional orbital angular momentum of light based on a robust mode converter. Appl. Phys. Lett., 2016, 108: 111108.

[32] W. M. Lee, X.-C. Yuan, K. Dholakia. Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step. Opt. Commun., 2004, 239: 129-135.

[33] M. Liu. Probing the vortex beams with fractional and integral topological charges using weak random scattering screen. Eur. Phys. J. D, 2013, 67: 244.

[34] N. Zhang. Analysis of fractional vortex beams using a vortex grating spectrum analyzer. Appl. Opt., 2010, 49: 2456-2462.

[35] H.-C. Huang, Y.-T. Lin, M.-F. Shih. Measuring the fractional orbital angular momentum of a vortex light beam by cascaded Mach-Zehnder interferometers. Opt. Commun., 2012, 285: 383-388.

[36] P. Li, B. Wang, X. Song, X. Zhang. Non-destructive identification of twisted light. Opt. Lett., 2016, 41: 1574-1577.

[37] O. Emile, J. Emile, C. Brousseau. Determination of the topological charge of a twisted beam with a Fresnel bi-prism. J. Opt., 2014, 16: 125703.

[38] R. Liu, J. Long, F. Wang, Y. Wang, P. Zhang, H. Hao, F. Li. Characterizing the phase profile of a vortex beam with angular-double-slit interference. J. Opt., 2013, 15: 125712.

[39] H. Zhou, L. Shi, X. Zhang, J. Dong. Dynamic interferometry measurement of orbital angular momentum of light. Opt. Lett., 2014, 39: 6058-6061.

[40] D. Fu, D. Chen, R. Liu, Y. Wang, H. Gao, F. Li, P. Zhang. Probing the topological charge of a vortex beam with dynamic angular double slits. Opt. Lett., 2015, 40: 788-791.

Jing Zhu, Pei Zhang, Dongzhi Fu, Dongxu Chen, Ruifeng Liu, Yingnan Zhou, Hong Gao, Fuli Li. Probing the fractional topological charge of a vortex light beam by using dynamic angular double slits[J]. Photonics Research, 2016, 4(5): 05000187.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!