Journal of Innovative Optical Health Sciences, 2018, 11 (5): 1850022, Published Online: Dec. 26, 2018  

A photoacoustic imaging system with variable gain at different depths

Author Affiliations
1 Shenzhen Key Laboratory for Minimal Invasive Medical Technologies Graduate School at Shenzhen Tsinghua University, Shenzhen 518055, P. R. China
2 Department of Biomedical Engineering Tsinghua University, Beijing 100084, P. R. China
3 Center of Precision Medicine and Healthcare Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, P. R. China
4 Shenzhen Wisonic Medical Technology Co., Ltd. Taoyuan Street, Nanshan District, Shenzhen 518055, P. R. China
Abstract
We established a photoacoustic imaging (PAI) system that can provide variable gain at different depths. The PAI system consists of a pulsed laser with an optical parametric oscillator working at a 728 nmwavelength and an imaging-acquisition-and-processing unit with an ultrasound transducer. Avoltage-controlled attenuator was used to realize variable gain at different depths when acquiring PAI signals. The proof-of-concept imaging results for variable gain at different depths were achieved using specific phantoms. Both resolution and optical contrast obtained through the results of variable gain for a targeted depth range are better than those of constant gain for all depths. To further testify the function, we imaged the sagittal section of the body of in vivo nude mice. In addition, we imaged an absorption sample embedded in a chicken breast tissue, reaching a maximum imaging depth of ~4.6 cm. The results obtained using the proposed method showed better resolution and contrast than when using 50 dB gain for all depths. The depth range resolution was ~1 mm, and the maximum imaging depth of our system reached ~4.6 cm. Furthermore, blood vessels can be revealed and targeted depth range can be selected in nude mice imaging.

Tian Guan, Yao Li, Muqun Yang, Yong Jiang, Yonghong He. A photoacoustic imaging system with variable gain at different depths[J]. Journal of Innovative Optical Health Sciences, 2018, 11(5): 1850022.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!