Photonics Research, 2019, 7 (1): 01000089, Published Online: Feb. 21, 2019   

Antenna-assisted subwavelength metal–InGaAs–metal structure for sensitive and direct photodetection of millimeter and terahertz waves Download: 565次

Author Affiliations
1 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
2 State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 Key Laboratory of Space Active Opto-electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
5 e-mail: zmhuang@mail.sitp.ac.cn
6 e-mail: EDHZHANG@ntu.edu.sg
Copy Citation Text

Jinchao Tong, Yue Qu, Fei Suo, Wei Zhou, Zhiming Huang, Dao Hua Zhang. Antenna-assisted subwavelength metal–InGaAs–metal structure for sensitive and direct photodetection of millimeter and terahertz waves[J]. Photonics Research, 2019, 7(1): 01000089.

References

[1] MittlemanD., Sensing with Terahertz Radiation (Springer, 2003).

[2] Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, Q. Hu. Tuning a terahertz wire laser. Nat. Photonics, 2009, 3: 732-737.

[3] B. Ferguson, X. C. Zhang. Materials for terahertz science and technology. Nat. Mater., 2002, 1: 26-33.

[4] N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, H.-T. Chen. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 2013, 340: 1304-1307.

[5] G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, A. Song. Terahertz detection and imaging using graphene ballistic rectifiers. Nano Lett., 2017, 17: 7015-7020.

[6] F. Sizov, A. Rogalski. THz detectors. Prog. Quantum Electron., 2010, 34: 278-347.

[7] V. I. Shashkin, V. L. Vaks, V. M. Danil’tsev, A. V. Maslovsky, A. V. Murel, S. D. Nikiforov, O. I. Khrykin, Y. I. Chechenin. Microwave detectors based on low-barrier planar Schottky diodes and their characteristics. Radiophys. Quantum Electron., 2005, 48: 485-490.

[8] M. Dyakonov, M. Shur. Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current. Phys. Rev. Lett., 1993, 71: 2465-2468.

[9] H. Qin, X. Li, J. Sun, Z. Zhang, Y. Sun, Y. Yu, X. Li, M. Luo. Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors. Appl. Phys. Lett., 2017, 110: 171109.

[10] W. Knap, Y. Deng, S. Rumyantsev, M. S. Shur. Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors. Appl. Phys. Lett., 2002, 81: 4637-4639.

[11] C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, M. Jarrahi. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nat. Commun., 2013, 4: 1622.

[12] K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, M. B. Johnston. Single nanowire photoconductive terahertz detectors. Nano Lett., 2014, 15: 206-210.

[13] H. C. Liu, C. Y. Song, A. J. SpringThorpe, J. C. Cao. Terahertz quantum-well photodetector. Appl. Phys. Lett., 2004, 84: 4068-4070.

[14] L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater., 2012, 11: 865-871.

[15] J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, H. D. Drew. Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol., 2012, 7: 472-478.

[16] X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, M. S. Fuhrer. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol., 2014, 9: 814-819.

[17] F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 2014, 9: 780-793.

[18] L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, M. S. Vitiello. Black phosphorus terahertz photodetectors. Adv. Mater., 2015, 27: 5567-5572.

[19] W. Tang, A. Politano, C. Guo, W. Guo, C. Liu, L. Wang, X. Chen, W. Lu. Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator. Adv. Funct. Mater., 2018, 28: 1801786.

[20] S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, H. Hirai. A single-photon detector in the far-infrared range. Nature, 2000, 403: 405-407.

[21] J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, D. H. Zhang. Surface plasmon induced direct detection of long wavelength photons. Nat. Commun., 2017, 8: 1660.

[22] C. Genet, T. W. Ebbesen. Light in tiny holes. Nature, 2007, 445: 39-46.

[23] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 2003, 424: 824-830.

[24] J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma. Plasmonics for extreme light concentration and manipulation. Nat. Mater., 2010, 9: 193-204.

[25] J. Tong, L. Y. M. Tobing, S. Qiu, D. H. Zhang, A. G. Unil Perera. Room temperature plasmon-enhanced InAs0.91Sb0.09-based heterojunction n-i-p mid-wave infrared photodetector. Appl. Phys. Lett., 2018, 113: 011110.

[26] A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl. Negative refraction in semiconductor metamaterials. Nat. Mater., 2007, 6: 946-950.

[27] MaierS. A., Plasmonics: Fundamentals and Applications (Springer, 2007).

[28] RogalskiA., Infrared Detectors, 2nd ed. (CRC Press, 2010).

[29] R. J. Nicholas, J. C. Portal, C. Houlbert, P. Perrier, T. P. Pearsall. An experimental determination of the effective masses for GaxIn1–xAsyP1–y alloys grown on InP. Appl. Phys. Lett., 1979, 34: 492-494.

[30] MoonK.HanH.ParkI., “Terahertz folded half-wavelength dipole antenna for high output power,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), Vol. 2, pp. 301304.

[31] TakazatoA.MatsuiT.KitagawaJ.KadoyaY., “InGaAs photoconductive antennas for THz emission and detection with 1.56  μm excitation,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2007), pp. 12.

[32] A. Singh, A. Pashkin, S. Winnerl, M. Helm, H. Schneider. Gapless broadband terahertz emission from a germanium photoconductive emitter. ACS Photon., 2018, 5: 2718-2723.

[33] K. Moon, E. S. Lee, I.-M. Lee, D. W. Park, K. H. Park. Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures. Appl. Phys. Lett., 2018, 112: 031102.

[34] J. Lloyd-Hughes, E. Castro-Camus, M. B. Johnston. Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches. Solid State Commun., 2005, 136: 595-600.

[35] GoldbergY. A.ShmidtN. M., “Gallium indium arsenide phosphide (GaxIn1–xAsyP1–y),” in Ternary and Quaternary III-V Compounds, Vol. 2 of Handbook Series on Semiconductor Parameters (World Scientific, 1999).

[36] PalikE. D., Handbook of Optical Constants of Solids II (Academic, 1991).

[37] ConstantineA. B., Antenna Theory: Analysis and Design, 3rd ed. (Wiley, 2005).

[38] A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, Y. Kadoya. Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  μm pulse excitation. Appl. Phys. Lett., 2007, 91: 011102.

[39] C. Karnetzky, P. Zimmermann, C. Trummer, C. Duque Sierra, M. Wörle, R. Kienberger, A. Holleitner. Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters. Nat. Commun., 2018, 9: 2471.

[40] R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, H. L. Hartnagel. Tunable CW-THz system with a log-periodic photoconductive emitter. Solid. State. Electron., 2004, 48: 2041-2045.

[41] A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, J. Stake. Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene. Nano Lett., 2014, 14: 5834-5838.

[42] M. Venkatesh, K. S. Rao, T. S. Abhilash, S. P. Tewari, A. K. Chaudhary. Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation. Opt. Mater., 2014, 36: 596-601.

[43] E. K. Lau, A. Lakhani, R. S. Tucker, M. C. Wu. Enhanced modulation bandwidth of nanocavity light emitting devices. Opt. Express, 2009, 17: 7790-7799.

[44] KlompenhouwerM. A., “51.1: Temporal impulse response and bandwidth of displays in relation to motion blur,” in SID Symposium Digest of Technical Papers (2005), Vol. 36, pp. 15781581.

[45] E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, C. Jagadish. Polarization-sensitive terahertz detection by multicontact photoconductive receivers. Appl. Phys. Lett., 2005, 86: 254102.

[46] A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, A.-S. Müller. Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation. IEEE Electron Dev. Lett., 2010, 31: 674-676.

[47] R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, M. S. Shur. Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power. Appl. Phys. Lett., 2006, 89: 253511.

Jinchao Tong, Yue Qu, Fei Suo, Wei Zhou, Zhiming Huang, Dao Hua Zhang. Antenna-assisted subwavelength metal–InGaAs–metal structure for sensitive and direct photodetection of millimeter and terahertz waves[J]. Photonics Research, 2019, 7(1): 01000089.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!