激光与光电子学进展, 2021, 58 (3): 0300006, 网络出版: 2021-03-12   

拼接式望远镜主镜主动支撑技术综述 下载: 843次

Overview of Active Support Technology for Main Mirror of Segmented Telescopes
作者单位
1 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
引用该论文

吴松航, 董吉洪, 徐抒岩, 许博谦. 拼接式望远镜主镜主动支撑技术综述[J]. 激光与光电子学进展, 2021, 58(3): 0300006.

Wu Songhang, Dong Jihong, Xu Shuyan, Xu Boqian. Overview of Active Support Technology for Main Mirror of Segmented Telescopes[J]. Laser & Optoelectronics Progress, 2021, 58(3): 0300006.

参考文献

[1] Mast T S, Nelson J E. Fabrication of large optical surfaces using a combination of polishing and mirror bending[J]. Proceedings of SPIE, 1990, 1236: 670-681.

[2] 徐宏, 杨利伟, 杨会生. 大型光学望远镜主镜主动支撑系统研究进展[J]. 激光与光电子学进展, 2018, 55(10): 100002.

    Xu H, Yang L W, Yang H S. Recent progress of active support system for large optical telescope primary mirror[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100002.

[3] 胡佳宁, 董吉洪, 周平伟. 地基大口径望远镜主镜主动支撑系统综述[J]. 激光与红外, 2017, 47(1): 5-12.

    Hu J N, Dong J H, Zhou P W. Review on active support system of large ground-based telescope primary mirror[J]. Laser & Infrared, 2017, 47(1): 5-12.

[4] 李旭鹏, 石进峰, 王炜, 等. 大口径空间主反射镜拼接化结构技术综述[J]. 激光与光电子学进展, 2018, 55(3): 030002.

    Li X P, Shi J F, Wang W, et al. Review on splicing structure technology of large aperture space primary mirror[J]. Laser & Optoelectronics Progress, 2018, 55(3): 030002.

[5] 白清顺, 王群, 张庆春, 等. 高精度微位移促动器及其在极地天文望远镜中的应用[J]. 中国科学:技术科学, 2016, 46(7): 697-705.

    Bai Q S, Wang Q, Zhang Q C, et al. High-precision micro-displacement actuator and its application in polar astronomical telescope[J]. Scientia Sinica (Technologica), 2016, 46(7): 697-705.

[6] Meeks R L, Ashby D, et al. Super hard points for the large binocular telescope[J]. Proceedings of SPIE, 2011, 733: 1-13.

[7] Mohammed A M, Li S. Dynamic neural networks for kinematic redundancy resolution of parallel stewart platforms[C]//IEEE Transactions on Cybernetics. New York: IEEE Press, 2016: 1538-1550.

[8] l.:s.n.], 2019: 289-292.

    李青, 袁家政, 刘飞. 基于位置反解的6-DOF运动平台应用[C]//2019年第二十三届网络新技术与应用年会论文集. [出版地不详:出版者不详], 2019: 289-292.

    Li Q, Yuan J Z, Liu F. Application of 6-DOF motion platform based on position inverse solution[C]// Proceedings of the 23rd Annual Conference on New Network Technologies and Applications in 2019. [S.

[9] 王富强, 袁学庆, 贾洪铎, 等. 基于Pro/E的六自由度运动平台仿真分析[J]. 中国高新科技, 2019(10): 12-15.

    Wang F Q, Yuan X Q, Jia H D, et al. Simulation analysis of six degrees of freedom motion platform based on Pro/E[J]. China High-Tech, 2019(10): 12-15.

[10] 高则超, 郝亮, 王富国, 等. 2 m级望远镜主动调节侧向支撑机构设计与优化[J]. 红外与激光工程, 2019, 48(8): 0814001.

    Gao Z C, Hao L, Wang F G, et al. Design and optimization of active adjusting lateral support mechanism for 2 m telescope[J]. Infrared and Laser Engineering, 2019, 48(8): 0814001.

[11] Mast T S, Nelson J E. Fabrication of the keck ten meter telescope primary mirror[J]. Proceedings of SPIE, 1985, 0542: 48-59.

[12] Ponslet E, Blanco D, Cho M, et al. Development of the primary mirror segment support assemblies for the Thirty Meter Telescope[J]. Proceedings of SPIE, 2006, 6273: 627319.

[13] Gong X F, Chen X, Chen Z. Layout optimization of warping harness for segmented-mirror telescope[J]. Optics and Precision Engineering, 2019, 27(2): 364-370.

[14] An Q C, Zhang J X, Yang F, et al. Performance improvement of the Giant Steerable Science Mirror prototype: calibration, added-on damping treatment, and warping harness[J]. Applied Optics, 2017, 56(36): 10009-10015.

[15] Hvisc A, Burge J. Alignment analysis of four-mirror spherical aberration correctors[J]. Proceedings of SPIE, 2008, 7018: 701819.

[16] Kim S, Yang H S, Lee Y W, et al. Merit function regression method for efficient alignment control of two-mirror optical systems[J]. Optics Express, 2007, 15(8): 5059-5068.

[17] Oteo E, Arasa J. New strategy for misalignment calculation in optical systems using artificial neural networks[J]. Optical Engineering, 2013, 52(7): 074105.

[18] Contos A R, Scott Acton D, Atcheson P D, et al. Aligning and maintaining the optics for the James Webb Space Telescope (JWST) on-orbit: the wavefront sensing and control concept of operations[J]. Proceedings of SPIE, 2006, 6265: 62650X.

[19] Mast T S, Nelson J E. The status of the W. M. Keck Observatory and ten meter telescope[J]. Proceedings of SPIE, 1986, 0571: 226-232.

[20] 韩琳楚. 基于TMT三镜的半主动光学面形校正技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017.

    Han L C. Study on correction of semi-active optics technology for large optical flat mirror based on TMT tertiary mirror[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics,Chinese Academy of Science, 2017.

[21] Jerry E, Terry S. The construction of the Keck Observatory[J]. Proceedings of SPIE, 1990, 1236: 47-45.

[22] Troy M, Chanan G, Roberts J. On-sky measurement accuracy of Keck telescope segment surface errors[J]. Proceedings of SPIE, 2014, 9145: 91451Q.

[23] Han L C, Liu C Z, Fan C B, et al. Low-order aberration correction of the TMT tertiary mirror prototype based on a warping harness[J]. Applied Optics, 2018, 57(7): 1662-1670.

[24] Haruna M, Kim I, Fukushima K, et al. Force control technology of segment mirror exchange robot for Thirty Meter Telescope (TMT)[J]. Proceedings of SPIE, 2016, 9906: 99062Z.

[25] Lorell K R, Aubrun J N, Clappier R R, et al. Design of a prototype primary mirror segment positioning actuator for the Thirty Meter Telescope[J]. Proceedings of SPIE, 2006, 6267: 62672T.

[26] Thompson P M, MacMynowski D G, Sirota M J. Control analysis of the TMT primary segment assembly[J]. Proceedings of SPIE, 2008, 7012: 70121N.

[27] Westerhoff T, Hartmann P, Jedamzik R, et al. Performance of industrial scale production of ZERODUR mirrors with diameter of 1.5 m proves readiness for the ELT M1 segments[J]. Proceedings of SPIE, 2012, 8444: 844437.

[28] Nijenhuis J, Heijmans J, den Breeje R, et al. Designing the primary mirror support for the E-ELT[J]. Proceedings of SPIE, 2016, 9906: 990616.

[29] Jiménez A, Morante E, Viera T, et al. Design of a prototype position actuator for the primary mirror segments of the European Extremely Large Telescope[J]. Proceedings of SPIE, 2010, 7733: 773354.

[30] Briguglio R, Pariani G, Xompero M, et al. A possible concept for the day-time calibration and co-phasing of the adaptive M4 mirror at the E-ELT telescope[J]. Proceedings of SPIE, 2018, 1070: 1070379.

[31] Hull C, Gunnels S, Johns M, et al. Giant Magellan Telescope primary mirror cells[J]. Proceedings of SPIE, 2010, 7733: 773327.

[32] Antonin H, Scott A, Guido A, et al. The giant magellan telescope adaptive optics program[J]. Proceedings of SPIE, 2012, 8847: 88471l.

[33] McLeod B, Catropa D, Durusky D, et al. The acquisition, guiding, and wavefront sensing system for the Giant Magellan Telescope[J]. Proceedings of SPIE, 2018, 1070: 107001T.

[34] Georage Z, Rebecca B, Brian W, et al. Systems engineering for the Giant Magellan Telescope[J]. Proceedings of SPIE, 2018, 10705: 107050l.

[35] 姚仰光. LAMOST观测控制系统的建立与测试[D]. 合肥: 中国科学技术大学, 2008.

    Yao Y G. Establishment and testing of LAMOST observation and control system[D]. Hefei: University of Science and Technology of China, 2008.

[36] Yao S, Wu X B, Ai Y L, et al. The large sky area multi-object fiber spectroscopic telescope (LAMOST) quasar survey: the fourth and fifth data releases[J]. The Astrophysical Journal Supplement Series, 2019, 240(1): 6.

[37] Cui X Q, Zhao Y H, Chu Y Q, et al. The large sky area multi-object fiber spectroscopic telescope (LAMOST)[J]. Research in Astronomy and Astrophysics, 2012, 12(9): 1197-1242.

[38] Venot O, Parmentier V, Blecic J, et al. Global chemistry and thermal structure models for the hot Jupiter WASP-43b and predictions for JWST[J]. The Astrophysical Journal Letters, 2020, 890(2): 176.

[39] Karpenko M, King J T, Dennehy C J, et al. Agility analysis of the James Webb Space Telescope[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(4): 810-821.

[40] Mark C. Status of the James Webb Space Telescope(JWST)[J]. Proceedings of SPIE, 2008, 7010: 70100L.

[41] Barto A, Acton D S, Finley P, et al. Actuator usage and fault tolerance of the James Webb Space Telescope optical element mirror actuators[J]. Proceedings of SPIE, 2012, 8442: 84422I.

[42] Chaney D M, Hadaway J B, Lewis J A. Cryogenic radius of curvature matching for the JWST primary mirror segments[J]. Proceedings of SPIE, 2009, 7439: 743916.

[43] n.], 2006: 239-251.

    Rober M. Cryogenic nano-actuator for JWST[C]//Proceedings of the 38th Aerospace Mechanisms Symposium. [S.l.:s.

[44] Wells C, Coon M. Optomechanical integration and alignment verification of the James Webb Space Telescope (JWST) optical telescope element[J]. Proceedings of SPIE, 2009, 7433: 743303.

[45] Sang C, Michael J, Marcel B. LUVOIR backplane thermal architecture development through the composite CTE sensitivity study[J]. Proceedings of SPIE, 2017, 10398: 103980D.

[46] Lou J Z, Redding D C, Nissen J A, et al. LUVOIR primary mirror segment alignment control with joint laser metrology and segment edge sensing[J]. Proceedings of SPIE, 2018, 1069: 1069840.

[47] Lee F, Matthew B, Scott K, et al. Ultra-stable segmented telescope sensing and control architecture[EB/OL]. [2020-04-29]. https://ntrs.nasa.gov/search.jsp?R=20170007445.

[48] Gong Q, Bolcar M R, Corsetti J A, et al. Optical design of the extreme coronagraph for living planetary systems instrument for the LUVOIR mission study[J]. Journal of Astronomical Telescope Instrument and Systems, 2019, 5(2): 025002.

[49] Bolcar M R, Aloezos S, Bly V T, et al. The large UV/Optical/Infrared surveyor (LUVOIR): decadal mission concept design update[J]. Proceedings of SPIE, 2017, 10398:1039809.

[50] Bolcar M R, Aloezos S, Bly V T, et al. The Large UV/Optical/Infrared Surveyor (LUVOIR): decadal mission concept design update[J]. Proceedings of SPIE, 2017, 1039: 1039809.

[51] James C, Matthew B, Julie C, et al. Overview of the optomechanical design of the LUVOIR instruments[EB/OL]. [2020-04-29].https://ntrs.nasa.gov/search.jsp?‍R=20190030689.

吴松航, 董吉洪, 徐抒岩, 许博谦. 拼接式望远镜主镜主动支撑技术综述[J]. 激光与光电子学进展, 2021, 58(3): 0300006. Wu Songhang, Dong Jihong, Xu Shuyan, Xu Boqian. Overview of Active Support Technology for Main Mirror of Segmented Telescopes[J]. Laser & Optoelectronics Progress, 2021, 58(3): 0300006.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!