光子学报, 2019, 48 (4): 0428001, 网络出版: 2019-04-28   

基于场地自动化观测技术的SNPP VIIRS高频次在轨辐射定标

High-frequency On-orbit Radiometric Calibration of SNPP VIIRS Based on In-site Automated Observation Technology
作者单位
1 中国科学技术大学 环境科学与光电技术学院, 合肥 230026
2 中国科学院安徽光学精密机械研究所 通用光学定标与表征技术重点实验室, 合肥 230031
引用该论文

张孟, 韦玮, 张艳娜, 赵春艳, 李新, 郑小兵. 基于场地自动化观测技术的SNPP VIIRS高频次在轨辐射定标[J]. 光子学报, 2019, 48(4): 0428001.

ZHANG Meng, WEI Wei, ZHANG Yan-na, ZHAO Chun-yan, LI Xin, ZHENG Xiao-bing. High-frequency On-orbit Radiometric Calibration of SNPP VIIRS Based on In-site Automated Observation Technology[J]. ACTA PHOTONICA SINICA, 2019, 48(4): 0428001.

参考文献

[1] 吕佳彦, 何明元, 陈林. 基于敦煌辐射校正场的自动化辐射定标方法[J]. 光学学报, 2017, 37(8): 0801003.

    LV Jia-yan, HE Ming-yuan CHEN Lin. Automated radiation calibration method based on Dunhuang radiometric calibration site[J]. Acta Optica Sinica, 2017, 37(8): 0801003.

[2] 刘恩超, 李新, 韦玮. 基于超光谱比值辐射仪的卫星自动化场地定标与分析[J]. 光谱学与光谱分析, 2016, 36(12): 40776.

    LIU En-chao, LI Xin, WEI Wei. Automatic field calibration and analysis of satillite based on hyper-spectral radio radiometer[J].Spectroscopy and Spectral Analysis, 2016, 36(12): 40776.

[3] 李元, 戎志国, 郑照军. FY-3A扫描辐射计的可见近红外通道在轨场地定标[J]. 光学精密工程, 2009, 17(12): 2966.

    LI Yuan, RONG Zhi-guo, ZHENG Zhao-jun. Post launch site calibration of visible and near-infrared channel of FY-3A visible and infrared radiometers[J].Optics and Precision Engineering, 2009, 17(12): 2966.

[4] 李新, 郑小兵, 尹亚鹏. 场地自动化定标技术进展[J]. 大气与环境光学学报, 2014, 9(1): 17-21.

    LI Xin, ZHENG Xiao-bing, YIN Ya-peng. Progress in automated sitevicarious calibration technologies[J].Journal of Atmospheric and Environmental Optics, 2014, 9(1): 17-21.

[5] CZAPLA-MYERS J S. Automated ground-based methodology in support of vicarious calibration[D]. Tucson: The University of Arizona, 2006: 41-43, 54-57.

[6] CZAPLA-MYERS J S, LESSON N P. Radiometric calibration of earth-oberving sensors using an automated test site at Railroad valley, Nevada[J]. Canadian Journal of Remote Sensing, 2010, 36(5): 474-487.

[7] WANG Ning, LI Chuan-rong. Ground based automated radiometric calibration system in Baotou site, China[C]. SPIE, 2017, 10427: 104271J.

[8] SCHMECHTIG C, SANTER R P, ROGER J C, et al. Automated ground-based station for vicarious calibration[C]. SPIE, 1997, 3221: 309-317.

[9] DANA X K, BRUEGGE C J. On-orbit calibration of the EO-1 hyperion and advanced land imager(ALI) sensors using the LED spectrometer(LSpec) automated facility[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4): 1244-1255.

[10] 邱刚刚, 李新, 韦玮等. 基于场地自动化观测技术的遥感器在轨辐射定标试验与分析[J]. 光学学报, 2016, 36(7): 0701001.

    QIU Gang-gang, LI Xin, WEI Wei. Experiment and analysis of on-orbit radiometric calibration for remote sensors based on in-site automated observation technology[J]. Acta Optica Sinica, 2016, 36(7): 0701001.

[11] 韦玮. 基于全球定标场网的卫星遥感器长时间序列定标方法研究[D]. 合肥: 中国科学技术大学, 2017: 1-10.

    WEI Wei. Research on long time serice radiometric calibration of satellite sensor based on global calibration site network[D]. Hefei: University of Science and Technology of China, 2017: 1-10.

[12] 董毅, 吕佳彦, 宋青涛. 反射率基法辐射定标原理和流程介绍[J]. 科技创新与应用, 2016, 24: 71-72.

    DONG Yi, LV Jia-yan, SONG Qing-tao. Introduction to the principle and process of reflectivity basic radiation calibration technology innovation and application[J]. Technological Innovation and Application, 2016, 24, 71-72.

[13] University of Wyoming[DB/OL]. [2018-11-26].http: //weather.uwyo.edu/.

[14] NASA[DB/OL]. [2018-11-26].ftp: //toms.gsfc.nasa.gov/pub/omi/data/ozone/.

[15] 王玲, 胡秀清, 陈林.基于多种亮度稳定目标的FY-3C/中分辨率光谱成像仪的反射太阳波段辐射定标[J].光学精密工程, 2015, 23(7): 1911-1920.

    WANG Ling, HU Xiu-qing, CHEN Lin. FY-3C/MERSI calibration for solar band using multi-reflectance stable targets[J].Optics and Precision Engineering, 2015, 23(7): 1911-1920.

[16] 韦玮, 张艳娜, 张孟等. 高分一号宽视场成像仪多场地高频次辐射定标[J]. 光子学报, 2018, 47(2): 0228001.

    WEI Wei, ZHANG Yan-na, ZHANG Meng. Multisite high-frequency radiometric calibration of GF-1 wide field of view[J]. Acta Photonica Sinica, 2018, 47(2): 0228001.

[17] 余谭其, 韦玮, 张艳娜. 敦煌辐射校正场春季BRDF特性分析[J]. 光子学报, 2018, 47(6): 0612004.

    YU Tang-qi, WEI Wei, ZHANG Yan-na. Analysis of the BRDF characteristics of Dunhuang radiometric calibration site in the spring[J]. Acta Photonica Sinica, 2018, 47(6): 0612004.

[18] WEI Wei, SONG Shuai. Development and application of automated vicarious calibration system [J]. Chinese Optics Letters, 2017, 15(10): 100101.

[19] 邱刚刚. 卫星辐射校正场自动化观测系统[D]. 合肥: 中国科学技术大学, 2017: 28-34.

    QIU Gang-gang. Development and calibration applications of automatic observation system on satellite radiometric calibration site[D]. Hefei: University of Science and Technology of China, 2017: 28-34.

[20] 孙凌, 郭茂华, 徐娜. 基于敦煌场地定标的FY-3 MERSI反射太阳波段在轨响应变化分析[J]. 光谱学与光谱分析, 2012, 32(7): 1870-1877.

    SUN Ling, GUO Mao-hua, XU Na. On-orbit response variation of FY-3 MERSI reflective solar bands based on Dunhuang site calibration[J].Spectroscopy and Spectral Analysis, 2012, 32(7): 1870-1877.

[21] BIGGAR S F. In-flight methods for satellite sensor absolute radiometric calibration[D]. Tucson: University of Arizona, 1990: 142-145.

[22] 张玉香, 张广顺, 黄意玢. FY-1C 遥感器可见-近红外各通道在轨辐射定标[J]. 气象学报, 2002, 60(6): 740-747.

    ZHANG Yu-xiang, ZHANG Guang-shun, HUANG Yi-bin. In-flight vicarious radiometric calibration for VIS-NIR channels of FY-1C satellite sensor at Dunhuang site[J]. Acta Meteorologica Sinica, 2002, 60(6): 740-747.

[23] ZHANG Yu-xiang, QIU Kang-mu, HU Xiu-qing. Vicarious radiometric calibration of satellite FY-1D sensors at visible and near infrared channels[J].Acta Meteorologica Sinica, 2004, 18(4): 501-516.

[24] BIGGAR S F, SLATER P N, GELLMAN D I. Uncertainties in the in-flight calibration of sensors with reference to measured ground sites in the 0.4 to 1.1μm range[J]. Remote Sensing of Environment, 1994, 48: 245-252.

张孟, 韦玮, 张艳娜, 赵春艳, 李新, 郑小兵. 基于场地自动化观测技术的SNPP VIIRS高频次在轨辐射定标[J]. 光子学报, 2019, 48(4): 0428001. ZHANG Meng, WEI Wei, ZHANG Yan-na, ZHAO Chun-yan, LI Xin, ZHENG Xiao-bing. High-frequency On-orbit Radiometric Calibration of SNPP VIIRS Based on In-site Automated Observation Technology[J]. ACTA PHOTONICA SINICA, 2019, 48(4): 0428001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!