中国激光, 2018, 45 (8): 0810004, 网络出版: 2018-08-11   

基于Golay脉冲编码技术的相干激光雷达仿真研究 下载: 954次

Simulation Research of Coherent Lidar Based on Golay Coding Technology
作者单位
1 中国科学技术大学地球和空间科学学院, 安徽 合肥 230026
2 中国科学院近地空间环境重点实验室, 安徽 合肥 230026
引用该论文

周艳宗, 王冲, 魏天问, 上官明佳, 夏海云. 基于Golay脉冲编码技术的相干激光雷达仿真研究[J]. 中国激光, 2018, 45(8): 0810004.

Zhou Yanzong, Wang Chong, Wei Tianwen, Shangguan Mingjia, Xia Haiyun. Simulation Research of Coherent Lidar Based on Golay Coding Technology[J]. Chinese Journal of Lasers, 2018, 45(8): 0810004.

参考文献

[1] Xia H Y, Sun D S, Yang Y H, et al. Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation[J]. Applied Optics, 2007, 46(29): 7120-7131.

    Xia H Y, Sun D S, Yang Y H, et al. Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation[J]. Applied Optics, 2007, 46(29): 7120-7131.

[2] 上官明佳, 夏海云, 舒志峰, 等. 双边缘瑞利测风技术中信号通道分光比对风速反演的影响[J]. 中国激光, 2014, 41(7): 0714001.

    上官明佳, 夏海云, 舒志峰, 等. 双边缘瑞利测风技术中信号通道分光比对风速反演的影响[J]. 中国激光, 2014, 41(7): 0714001.

    Shangguan M J, Xia H Y, Shu Z F, et al. Effect of splitting ratio on the inversion of wind in the dual edge Rayleigh wind measurement technology[J]. Chinese Journal of Lasers, 2014, 41(7): 0714001.

    Shangguan M J, Xia H Y, Shu Z F, et al. Effect of splitting ratio on the inversion of wind in the dual edge Rayleigh wind measurement technology[J]. Chinese Journal of Lasers, 2014, 41(7): 0714001.

[3] Shangguan M J, Xia H Y, Wang C, et al. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector[J]. Optics Letters, 2017, 42(18): 3541-3544.

    Shangguan M J, Xia H Y, Wang C, et al. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector[J]. Optics Letters, 2017, 42(18): 3541-3544.

[4] FujiiT, FukuchiT. Laser remote sensing[M]. New York: Taylor & Francis Group, 2005: 472- 523.

    FujiiT, FukuchiT. Laser remote sensing[M]. New York: Taylor & Francis Group, 2005: 472- 523.

[5] Shun C M, Chan P W. Applications of an infrared Doppler lidar in detection of wind shear[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(5): 637-655.

    Shun C M, Chan P W. Applications of an infrared Doppler lidar in detection of wind shear[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(5): 637-655.

[6] Banakh V A, Smalikho I N, Rahm S. Estimation of the refractive index structure characteristic of air from coherent Doppler wind lidar data[J]. Optics Letters, 2014, 39(15): 4321-4324.

    Banakh V A, Smalikho I N, Rahm S. Estimation of the refractive index structure characteristic of air from coherent Doppler wind lidar data[J]. Optics Letters, 2014, 39(15): 4321-4324.

[7] Köpp F, Rahm S, Smalikho I. Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(2): 194-206.

    Köpp F, Rahm S, Smalikho I. Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(2): 194-206.

[8] Koch G J, Beyon J Y, Barnes B W, et al. High-energy 2-μm Doppler lidar for wind measurements[J]. Optical Engineering, 2007, 46(11): 116201.

    Koch G J, Beyon J Y, Barnes B W, et al. High-energy 2-μm Doppler lidar for wind measurements[J]. Optical Engineering, 2007, 46(11): 116201.

[9] Witschas B, Rahm S, Dörnbrack A, et al. Airborne wind lidar measurements of vertical and horizontal winds for the investigation of orographically induced gravity waves[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(6): 1371-1386.

    Witschas B, Rahm S, Dörnbrack A, et al. Airborne wind lidar measurements of vertical and horizontal winds for the investigation of orographically induced gravity waves[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(6): 1371-1386.

[10] Targ R, Steakley B C, Hawley J G, et al. Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 μm[J]. Applied Optics, 1996, 35(36): 7117-7127.

    Targ R, Steakley B C, Hawley J G, et al. Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 μm[J]. Applied Optics, 1996, 35(36): 7117-7127.

[11] Frehlich R G, Kavaya M J. Coherent laser radar performance for general atmospheric refractive turbulence[J]. Applied Optics, 1991, 30(36): 5325-5352.

    Frehlich R G, Kavaya M J. Coherent laser radar performance for general atmospheric refractive turbulence[J]. Applied Optics, 1991, 30(36): 5325-5352.

[12] Targ R, Kavaya M J, Huffaker R M, et al. Coherent lidar airborne windshear sensor: performance evaluation[J]. Applied Optics, 1991, 30(15): 2013-2026.

    Targ R, Kavaya M J, Huffaker R M, et al. Coherent lidar airborne windshear sensor: performance evaluation[J]. Applied Optics, 1991, 30(15): 2013-2026.

[13] Huffaker R M, Hardesty R M. Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems[J]. Proceedings of the IEEE, 1996, 84(2): 181-204.

    Huffaker R M, Hardesty R M. Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems[J]. Proceedings of the IEEE, 1996, 84(2): 181-204.

[14] AndoT, KameyamaS, HiranoY. All-fiber coherent Doppler lidar technologies at Mitsubishi Electric Corporation[C]∥IOP Conference Series: Earth and Environmental Science, 2008, 1( 1): 012011.

    AndoT, KameyamaS, HiranoY. All-fiber coherent Doppler lidar technologies at Mitsubishi Electric Corporation[C]∥IOP Conference Series: Earth and Environmental Science, 2008, 1( 1): 012011.

[15] Cariou JP, SauvageL, ThoboisL, et al. Long range scanning pulsed coherent lidar for real time wind monitoring in the Planetary Boundary Layer[C/OL]∥Proceedings of 16th Conference on Coherent Laser Radar, 2011-06-20[2018-01-28]. https:∥pdfs.semanticscholar.org/c0be/0e4f9045724ad875564925e614766441b39e.pdf.

    Cariou JP, SauvageL, ThoboisL, et al. Long range scanning pulsed coherent lidar for real time wind monitoring in the Planetary Boundary Layer[C/OL]∥Proceedings of 16th Conference on Coherent Laser Radar, 2011-06-20[2018-01-28]. https:∥pdfs.semanticscholar.org/c0be/0e4f9045724ad875564925e614766441b39e.pdf.

[16] Wang C, Xia H Y, Shangguan M J, et al. 15 μm polarization coherent lidar incorporating time-division multiplexing[J]. Optics Express, 2017, 25(17): 20663-20674.

    Wang C, Xia H Y, Shangguan M J, et al. 15 μm polarization coherent lidar incorporating time-division multiplexing[J]. Optics Express, 2017, 25(17): 20663-20674.

[17] 潘静岩, 邬双阳, 刘果, 等. 相干激光测风雷达风场测量技术[J]. 红外与激光工程, 2013, 42(7): 1720-1724.

    潘静岩, 邬双阳, 刘果, 等. 相干激光测风雷达风场测量技术[J]. 红外与激光工程, 2013, 42(7): 1720-1724.

    Pan J Y, Wu S Y, Guo L, et al. Wind measurement techniques of coherent wind lidar[J]. Infrared & Laser Engineering, 2013, 42(7): 1720-1724.

    Pan J Y, Wu S Y, Guo L, et al. Wind measurement techniques of coherent wind lidar[J]. Infrared & Laser Engineering, 2013, 42(7): 1720-1724.

[18] Diao W F, Zhang X, Liu J Q, et al. All fiber pulsed coherent lidar development for wind profiles measurements in boundary layers[J]. Chinese Optics Letters, 2014, 12(7): 072801-072804.

    Diao W F, Zhang X, Liu J Q, et al. All fiber pulsed coherent lidar development for wind profiles measurements in boundary layers[J]. Chinese Optics Letters, 2014, 12(7): 072801-072804.

[19] Shan G, Li S, Lu W, et al. Experiment of coherent lidar using light at 1.55 μm[J]. Proceedings of SPIE, 2015, 9674: 96740A.

    Shan G, Li S, Lu W, et al. Experiment of coherent lidar using light at 1.55 μm[J]. Proceedings of SPIE, 2015, 9674: 96740A.

[20] Zhai X C, Wu S H, Liu B Y. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness[J]. Optics Express, 2017, 25(12): A515-A529.

    Zhai X C, Wu S H, Liu B Y. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness[J]. Optics Express, 2017, 25(12): A515-A529.

[21] Bu Z C, Zhang Y C, Chen S Y, et al. Noise modeling by the trend of each range gate for coherent Doppler lidar[J]. Optical Engineering, 2014, 53(6): 063109.

    Bu Z C, Zhang Y C, Chen S Y, et al. Noise modeling by the trend of each range gate for coherent Doppler lidar[J]. Optical Engineering, 2014, 53(6): 063109.

[22] 范琪, 朱克云, 郑佳锋, 等. 不同天气类型下全光纤相干激光测风雷达探测性能分析[J]. 中国激光, 2017, 44(2): 0210003.

    范琪, 朱克云, 郑佳锋, 等. 不同天气类型下全光纤相干激光测风雷达探测性能分析[J]. 中国激光, 2017, 44(2): 0210003.

    Fan Q, Zhu K Y, Zheng J F, et al. Detection performance analysis of all-fiber coherent wind lidar under different weather types[J]. Chinese Journal of Lasers, 2017, 44(2): 0210003.

    Fan Q, Zhu K Y, Zheng J F, et al. Detection performance analysis of all-fiber coherent wind lidar under different weather types[J]. Chinese Journal of Lasers, 2017, 44(2): 0210003.

[23] Frehlich R, Cornman L. Estimating spatial velocity statistics with coherent Doppler lidar[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(3): 355-366.

    Frehlich R, Cornman L. Estimating spatial velocity statistics with coherent Doppler lidar[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(3): 355-366.

[24] 靳笑晗, 汪岳峰, 竹孝鹏, 等. 相干多普勒测风激光雷达低信噪比区域回波信号的估计方法[J]. 光学与光电技术, 2013, 11(3): 10-14.

    靳笑晗, 汪岳峰, 竹孝鹏, 等. 相干多普勒测风激光雷达低信噪比区域回波信号的估计方法[J]. 光学与光电技术, 2013, 11(3): 10-14.

    Jin X H, Wang Y F, Zhu X P, et al. Doppler-shift estimation method in low SNR region for coherent doppler lidar[J]. Optics & Optoelectronic Technology, 2013, 11(3): 10-14.

    Jin X H, Wang Y F, Zhu X P, et al. Doppler-shift estimation method in low SNR region for coherent doppler lidar[J]. Optics & Optoelectronic Technology, 2013, 11(3): 10-14.

[25] Frehlich R G, Yadlowsky M J. Performance of mean-frequency estimators for Doppler radar and lidar[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11(5): 1217-1230.

    Frehlich R G, Yadlowsky M J. Performance of mean-frequency estimators for Doppler radar and lidar[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11(5): 1217-1230.

[26] Nazarathy M, Newton S A, Giffard R P, et al. Real-time long range complementary correlation optical time domain reflectometer[J]. Journal of Lightwave Technology, 1989, 7(1): 24-38.

    Nazarathy M, Newton S A, Giffard R P, et al. Real-time long range complementary correlation optical time domain reflectometer[J]. Journal of Lightwave Technology, 1989, 7(1): 24-38.

[27] 杜晓林, 苏涛, 王旭, 等. 基于Golay互补序列空时编码的MIMO雷达波形设计[J]. 电子与信息学报, 2014, 36(8): 1966-1971.

    杜晓林, 苏涛, 王旭, 等. 基于Golay互补序列空时编码的MIMO雷达波形设计[J]. 电子与信息学报, 2014, 36(8): 1966-1971.

    Du X L, Su T, Wang X, et al. Golay complementary sequence with space time coding for MIMO radar waveform design[J]. Journal of Electronics & Information Technology, 2014, 36(8): 1966-1971.

    Du X L, Su T, Wang X, et al. Golay complementary sequence with space time coding for MIMO radar waveform design[J]. Journal of Electronics & Information Technology, 2014, 36(8): 1966-1971.

[28] 罗源, 闫连山, 邵理阳, 等. 基于布里渊光时域分析传感系统的格雷-差分脉冲混合编码技术[J]. 光学学报, 2016, 36(8): 0806002.

    罗源, 闫连山, 邵理阳, 等. 基于布里渊光时域分析传感系统的格雷-差分脉冲混合编码技术[J]. 光学学报, 2016, 36(8): 0806002.

    Luo Y, Yan L S, Shao L Y, et al. Golay-differential pulse hybrid coding technology based on brillouin optical time domain analysis sensors[J]. Acta Optica Sinica, 2016, 36(8): 0806002.

    Luo Y, Yan L S, Shao L Y, et al. Golay-differential pulse hybrid coding technology based on brillouin optical time domain analysis sensors[J]. Acta Optica Sinica, 2016, 36(8): 0806002.

[29] Wang F, Zhu C H, Cao C Q, et al. Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding[J]. Optics Express, 2017, 25(4): 3504-3513.

    Wang F, Zhu C H, Cao C Q, et al. Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding[J]. Optics Express, 2017, 25(4): 3504-3513.

[30] Pezeshki A, Calderbank A R, Moran W, et al. Doppler resilient Golay complementary waveforms[J]. IEEE Transactions on Information Theory, 2008, 54(9): 4254-4266.

    Pezeshki A, Calderbank A R, Moran W, et al. Doppler resilient Golay complementary waveforms[J]. IEEE Transactions on Information Theory, 2008, 54(9): 4254-4266.

[31] Salamitou P, Dabas A, Flamant P H. Simulation in the time domain for heterodyne coherent laser radar[J]. Applied Optics, 1995, 34(3): 499-506.

    Salamitou P, Dabas A, Flamant P H. Simulation in the time domain for heterodyne coherent laser radar[J]. Applied Optics, 1995, 34(3): 499-506.

[32] 郭贤斌, 郭磐, 张寅超, 等. 最大似然频谱估计法与周期图最大值法的性能比较分析[J]. 中国激光, 2016, 43(3): 0314001.

    郭贤斌, 郭磐, 张寅超, 等. 最大似然频谱估计法与周期图最大值法的性能比较分析[J]. 中国激光, 2016, 43(3): 0314001.

    Guo X B, Guo P, Zhang Y C, et al. Performance analysis of maximum likelihood spectral estimator compared with PM estimator[J]. Chinese Journal of Lasers, 2016, 43(3): 0314001.

    Guo X B, Guo P, Zhang Y C, et al. Performance analysis of maximum likelihood spectral estimator compared with PM estimator[J]. Chinese Journal of Lasers, 2016, 43(3): 0314001.

[33] 白雪, 郭磐, 陈思颖, 等. 相干多普勒测风激光雷达时域信号仿真及时频分析[J]. 中国激光, 2015, 42(1): 0114003.

    白雪, 郭磐, 陈思颖, 等. 相干多普勒测风激光雷达时域信号仿真及时频分析[J]. 中国激光, 2015, 42(1): 0114003.

    Bai X, Guo P, Chen S Y, et al. Simulation in the time domain and time-frequency analysis for coherent doppler wind lidar[J]. Chinese Journal of Lasers, 2015, 42(1): 0114003.

    Bai X, Guo P, Chen S Y, et al. Simulation in the time domain and time-frequency analysis for coherent doppler wind lidar[J]. Chinese Journal of Lasers, 2015, 42(1): 0114003.

周艳宗, 王冲, 魏天问, 上官明佳, 夏海云. 基于Golay脉冲编码技术的相干激光雷达仿真研究[J]. 中国激光, 2018, 45(8): 0810004. Zhou Yanzong, Wang Chong, Wei Tianwen, Shangguan Mingjia, Xia Haiyun. Simulation Research of Coherent Lidar Based on Golay Coding Technology[J]. Chinese Journal of Lasers, 2018, 45(8): 0810004.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!