Photonics Research, 2018, 6 (9): 09000918, Published Online: Sep. 5, 2018  

Irreversible denaturation of DNA: a method to precisely control the optical and thermo-optic properties of DNA thin solid films Download: 668次

Author Affiliations
Photonic Device Physics Laboratory, Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 120-749, South Korea
Copy Citation Text

Hayoung Jeong, Paulson Bjorn, Seongjin Hong, Seunguk Cheon, Kyunghwan Oh. Irreversible denaturation of DNA: a method to precisely control the optical and thermo-optic properties of DNA thin solid films[J]. Photonics Research, 2018, 6(9): 09000918.

References

[1] J. D. Watson, F. H. Crick. A structure for deoxyribose nucleic acid. Nature, 1953, 171: 737-738.

[2] B. Singh, N. S. Sariciftci, J. G. Grote, F. K. Hopkins. Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric. J. Appl. Phys., 2006, 100: 024514.

[3] J. A. Hagen, W. Li, A. Steckl, J. Grote. Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer. Appl. Phys. Lett., 2006, 88: 171109.

[4] A. Steckl, H. Spaeth, H. You, E. Gomez, J. Grote. DNA as an optical material. Opt. Photon. News, 2011, 22: 34-39.

[5] Y. Kawabe, L. Wang, S. Horinouchi, N. Ogata. Amplified spontaneous emission from fluorescent dye doped DNA-surfactant complex films. Adv. Mater., 2000, 12: 1281-1283.

[6] E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, J. G. Grote. DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators. Appl. Phys. Lett., 2011, 98: 103304.

[7] R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, K. Oh. Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser. Sci. Rep., 2017, 7: 41480.

[8] A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, S. H. Park. A novel nanometric DNA thin film as a sensor for alpha radiation. Sci. Rep., 2013, 3: 2062.

[9] S. Hong, W. Jung, T. Nazari, S. Song, T. Kim, C. Quan, K. Oh. Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor. Opt. Lett., 2017, 42: 1943-1945.

[10] W. Jung, H. Jun, S. Hong, B. Paulson, Y. S. Nam, K. Oh. Cationic lipid binding control in DNA based biopolymer and its impacts on optical and thermo-optic properties of thin solid films. Opt. Mater. Express, 2017, 7: 3796-3808.

[11] E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, A. Tane. Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue. Mol. Cryst. Liq. Cryst., 2012, 556: 309-316.

[12] B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, S. Park. Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping. Sci. Rep., 2018, 8: 9358.

[13] J. Marmur, P. Doty. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol., 1962, 5: 109-118.

[14] J. Marmur, P. Ts’o. Denaturation of deoxyribonucleic acid by formamide. Biochim. Biophys. Acta, 1961, 51: 32-36.

[15] M.-S. Hung, Y.-T. Huang. Laser-induced heating for cell release and cellular DNA denaturation in a microfluidics. BioChip J., 2013, 7: 319-324.

[16] J. G. Wetmur, N. Davidson. Kinetics of renaturation of DNA. J. Mol. Biol., 1968, 31: 349-370.

[17] H. R. Massie, B. H. Zimm. Kinetics of denaturation of DNA. Biopolymers, 1969, 7: 475-493.

[18] M. Ageno, E. Dore, C. Frontali. The alkaline denaturation of DNA. Biophys. J., 1969, 9: 1281-1311.

[19] P. Ehrlich, P. Doty. The alkaline denaturation of deoxyribose nucleic acid. J. Am. Chem. Soc., 1958, 80: 4251-4255.

[20] F. W. Studier. Sedimentation studies of the size and shape of DNA. J. Mol. Biol., 1965, 11: 373-390.

[21] X. Wang, H. J. Lim, A. Son. Characterization of denaturation and renaturation of DNA for DNA hybridization. Environ. Health Toxicol., 2014, 29: e2014007.

[22] C. L. Schildkraut, J. Marmur, P. Doty. The formation of hybrid DNA molecules and their use in studies of DNA homologies. J. Mol. Biol., 1961, 3: 595-617.

[23] P. Doty, J. Marmur, J. Eigner, C. Schildkraut. Strand separation and specific recombination in deoxyribonucleic acids: physical chemical studies. Proc. Natl. Acad. Sci. USA, 1960, 46: 461-476.

[24] A. Samoc, A. Miniewicz, M. Samoc, J. G. Grote. Refractive index anisotropy and optical dispersion in films of deoxyribonucleic acid. J. Appl. Polym. Sci., 2007, 105: 236-245.

[25] J. Nizioł, K. Makyła-Juzak, M. M. Marzec, R. Ekiert, M. Marzec, E. Gondek. Thermal stability of the solid DNA as a novel optical material. Opt. Mater., 2017, 66: 344-350.

[26] S. Sun, D. Thompson, U. Schmidt, D. Graham, G. J. Leggett. Micro-/nano-patterning of DNA and rapid readout with SERS tags. Chem. Commun., 2010, 46: 5292-5294.

[27] T. Masuda, A. Yamaguchi, M. Hayashida, F. Asari-Oi, S. Matsuo, H. Misawa. Visualization of DNA hybridization on gold thin film by utilizing the resistance effect of DNA monolayer. Sens. Actuators B, 2005, 105: 556-561.

[28] Y.-W. Kwon, C. H. Lee, D.-H. Choi, J.-I. Jin. Materials science of DNA. J. Mater. Chem., 2009, 19: 1353-1380.

[29] P. Y. Vadimovich. UV absorbance of aqueous DNA. Eur. J. Biophys., 2015, 3: 19-22.

[30] P. Doty, H. Boedtker, J. Fresco, R. Haselkorn, M. Litt. Secondary structure in ribonucleic acids. Proc. Natl. Acad. Sci. USA, 1959, 45: 482-499.

[31] B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, S. H. Park. Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films. Sci. Rep., 2015, 5: 12722.

[32] G. Tyagi, D. K. Jangir, P. Singh, R. Mehrotra. DNA interaction studies of an anticancer plant alkaloid, vincristine, using Fourier transform infrared spectroscopy. DNA Cell Biol., 2010, 29: 693-699.

[33] X. Wang, A. Son. Effects of pretreatment on the denaturation and fragmentation of genomic DNA for DNA hybridization. Environ. Sci. Process. Impacts, 2013, 15: 2204-2212.

[34] L. Wang, J. Yoshida, N. Ogata, S. Sasaki, T. Kajiyama. Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)–cationic surfactant complexes: large-scale preparation and optical and thermal properties. Chem. Mater., 2001, 13: 1273-1281.

[35] S. Elhadj, G. Singh, R. F. Saraf. Optical properties of an immobilized DNA monolayer from 255 to 700  nm. Langmuir, 2004, 20: 5539-5543.

[36] OhK.PaekU.-C., Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards (Wiley, 2012).

[37] EggemanT., “Sodium Hydroxide,” in Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, 2011).

[38] A. L. Olsen, E. R. Washburn. An interpolation table for refractive index-normality relationship for solutions of hydrochloric acid and sodium hydroxide. Trans. Kans. Acad. Sci., 1937, 40: 117-126.

[39] Z. Zhang, P. Zhao, P. Lin, F. Sun. Thermo-optic coefficients of polymers for optical waveguide applications. Polymer, 2006, 47: 4893-4896.

Hayoung Jeong, Paulson Bjorn, Seongjin Hong, Seunguk Cheon, Kyunghwan Oh. Irreversible denaturation of DNA: a method to precisely control the optical and thermo-optic properties of DNA thin solid films[J]. Photonics Research, 2018, 6(9): 09000918.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!