光学学报, 2019, 39 (4): 0416002, 网络出版: 2019-05-10   

太赫兹波段双频带手征性超表面的设计 下载: 1188次

Design of Dual-Band Terahertz Chiral Metasurface
作者单位
1 武汉科技大学信息科学与工程学院, 湖北 武汉 430081
2 华中科技大学光学与电子信息学院, 湖北 武汉 430074
引用该论文

赵铭茜, 程用志, 陈浩然, 龚荣洲. 太赫兹波段双频带手征性超表面的设计[J]. 光学学报, 2019, 39(4): 0416002.

Mingxi Zhao, Yongzhi Cheng, Haoran Chen, Rongzhou Gong. Design of Dual-Band Terahertz Chiral Metasurface[J]. Acta Optica Sinica, 2019, 39(4): 0416002.

参考文献

[1] Cole M A, Chen W C, Liu M K, et al. Strong broadband terahertz optical activity through control of the Blaschke phase with chiral metasurfaces[J]. Physical Review A, 2017, 8(1): 014019.

    Cole M A, Chen W C, Liu M K, et al. Strong broadband terahertz optical activity through control of the Blaschke phase with chiral metasurfaces[J]. Physical Review A, 2017, 8(1): 014019.

[2] Zheludev N I, Kivshar Y S. From metamaterials to metadevices[J]. Nature Materials, 2012, 11(11): 917-924.

    Zheludev N I, Kivshar Y S. From metamaterials to metadevices[J]. Nature Materials, 2012, 11(11): 917-924.

[3] Hannam K, Powell D A, Shadrivov I V, et al. Broadband chiral metamaterials with large optical activity[J]. Physical Review B, 2014, 89(12): 125105.

    Hannam K, Powell D A, Shadrivov I V, et al. Broadband chiral metamaterials with large optical activity[J]. Physical Review B, 2014, 89(12): 125105.

[4] Rogacheva A V, Fedotov V A, Schwanecke A S, et al. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure[J]. Physical Review Letters, 2006, 97(17): 177401.

    Rogacheva A V, Fedotov V A, Schwanecke A S, et al. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure[J]. Physical Review Letters, 2006, 97(17): 177401.

[5] Jia Y P, Zhang Y L, Dong X Z, et al. Complementary chiral metasurface with strong broadband optical activity and enhanced transmission[J]. Applied Physics Letters, 2014, 104(1): 011108.

    Jia Y P, Zhang Y L, Dong X Z, et al. Complementary chiral metasurface with strong broadband optical activity and enhanced transmission[J]. Applied Physics Letters, 2014, 104(1): 011108.

[6] Wongkasem N, Akyurtlu A. Light splitting effects in chiral metamaterials[J]. Journal of Optics, 2010, 12(3): 035101.

    Wongkasem N, Akyurtlu A. Light splitting effects in chiral metamaterials[J]. Journal of Optics, 2010, 12(3): 035101.

[7] Dincer F. Investigation and physical interpretation of H-shaped metamaterials in X-band waveguide for microwave filter applications[J]. Journal of Electronic Materials, 2016, 45(1): 812-819.

    Dincer F. Investigation and physical interpretation of H-shaped metamaterials in X-band waveguide for microwave filter applications[J]. Journal of Electronic Materials, 2016, 45(1): 812-819.

[8] 刘锦景, 罗孝阳, 刘道亚, 等. 光频段双层手征结构光学特性及负折射率研究[J]. 光学学报, 2014, 34(1): 0116003.

    刘锦景, 罗孝阳, 刘道亚, 等. 光频段双层手征结构光学特性及负折射率研究[J]. 光学学报, 2014, 34(1): 0116003.

    Liu J J, Luo X Y, Liu D Y, et al. Investigation on optical property and negative refractive index in double-layer chiral structure of optical region[J]. Acta Optica Sinica, 2014, 34(1): 0116003.

    Liu J J, Luo X Y, Liu D Y, et al. Investigation on optical property and negative refractive index in double-layer chiral structure of optical region[J]. Acta Optica Sinica, 2014, 34(1): 0116003.

[9] Cheng Y Z, Chen H R, Zhao J C, et al. Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves[J]. Optical Materials Express, 2018, 8(5): 1399-1409.

    Cheng Y Z, Chen H R, Zhao J C, et al. Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves[J]. Optical Materials Express, 2018, 8(5): 1399-1409.

[10] Karaaslan M, Bakir M. Chiral metamaterial based multifunctional sensor applications[J]. Progress in Electromagnetics Research, 2014, 149: 55-67.

    Karaaslan M, Bakir M. Chiral metamaterial based multifunctional sensor applications[J]. Progress in Electromagnetics Research, 2014, 149: 55-67.

[11] Wu J F, Ng B, Turaga S P, et al. Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index[J]. Applied Physics Letters, 2013, 103(14): 141106.

    Wu J F, Ng B, Turaga S P, et al. Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index[J]. Applied Physics Letters, 2013, 103(14): 141106.

[12] Zalkovskij M, Malureanu R, Kremers C, et al. Optically active Babinet planar metamaterial film for terahertz polarization manipulation[J]. Laser & Photonics Reviews, 2013, 7(5): 810-817.

    Zalkovskij M, Malureanu R, Kremers C, et al. Optically active Babinet planar metamaterial film for terahertz polarization manipulation[J]. Laser & Photonics Reviews, 2013, 7(5): 810-817.

[13] Li Y, Huang Q, Wang D C, et al. Polarization-independent broadband terahertz chiral metamaterials on flexible substrate[J]. Applied Physics A, 2014, 115(1): 57-62.

    Li Y, Huang Q, Wang D C, et al. Polarization-independent broadband terahertz chiral metamaterials on flexible substrate[J]. Applied Physics A, 2014, 115(1): 57-62.

[14] Sonsilphong A, Gutruf P, Withayachumnankul W, et al. Flexible bi-layer terahertz chiral metamaterials[J]. Journal of Optics, 2015, 17(8): 085101.

    Sonsilphong A, Gutruf P, Withayachumnankul W, et al. Flexible bi-layer terahertz chiral metamaterials[J]. Journal of Optics, 2015, 17(8): 085101.

[15] Hannam K, Powell D A, Shadrivov I V, et al. Dispersionless optical activity in metamaterials[J]. Applied Physics Letters, 2013, 102(20): 201121.

    Hannam K, Powell D A, Shadrivov I V, et al. Dispersionless optical activity in metamaterials[J]. Applied Physics Letters, 2013, 102(20): 201121.

[16] Huang Y Y, Yao Z H, Wang Q, et al. Coupling Tai Chi chiral metamaterials with strong optical activity in terahertz region[J]. Plasmonics, 2015, 10(4): 1005-1011.

    Huang Y Y, Yao Z H, Wang Q, et al. Coupling Tai Chi chiral metamaterials with strong optical activity in terahertz region[J]. Plasmonics, 2015, 10(4): 1005-1011.

[17] Ma X L, Xiao Z Y, Liu D J. Dual-band cross polarization converter in bi-layered complementary chiral metamaterial[J]. Journal of Modern Optics, 2016, 63(10): 937-940.

    Ma X L, Xiao Z Y, Liu D J. Dual-band cross polarization converter in bi-layered complementary chiral metamaterial[J]. Journal of Modern Optics, 2016, 63(10): 937-940.

[18] Tang J Y, Xiao Z Y, Xu K K, et al. Cross polarization conversion based on a new chiral spiral slot structure in THz region[J]. Optical and Quantum Electronics, 2016, 48(2): 111.

    Tang J Y, Xiao Z Y, Xu K K, et al. Cross polarization conversion based on a new chiral spiral slot structure in THz region[J]. Optical and Quantum Electronics, 2016, 48(2): 111.

[19] Xu K K, Xiao Z Y, Tang J Y, et al. Dispersionless and giant optical activity in terahertz chiral metamaterials[J]. Plasmonics, 2016, 11(5): 1257-1264.

    Xu K K, Xiao Z Y, Tang J Y, et al. Dispersionless and giant optical activity in terahertz chiral metamaterials[J]. Plasmonics, 2016, 11(5): 1257-1264.

[20] Zhai X M, Zhou X, Yao L F, et al. Complementary chiral metamaterial with multi-band asymmetric transmission and mutual conversion[J]. Journal of Electromagnetic Waves and Applications, 2016, 30(8): 1005-1020.

    Zhai X M, Zhou X, Yao L F, et al. Complementary chiral metamaterial with multi-band asymmetric transmission and mutual conversion[J]. Journal of Electromagnetic Waves and Applications, 2016, 30(8): 1005-1020.

[21] Ma X L, Xiao Z Y, Liu D J, et al. Dispersionless optical activity based on novel windmill-shaped chiral metamaterial[J]. Modern Physics Letters B, 2016, 30(4): 1650033.

    Ma X L, Xiao Z Y, Liu D J, et al. Dispersionless optical activity based on novel windmill-shaped chiral metamaterial[J]. Modern Physics Letters B, 2016, 30(4): 1650033.

[22] Kordi M, Mirsalehi M M. Optical chiral metamaterial based on the resonant behaviour of nanodiscs[J]. Journal of Modern Optics, 2016, 63(15): 1473-1479.

    Kordi M, Mirsalehi M M. Optical chiral metamaterial based on the resonant behaviour of nanodiscs[J]. Journal of Modern Optics, 2016, 63(15): 1473-1479.

[23] Jia X L, Wang X O, Meng Q X, et al. Tunable multi-band chiral metamaterials based on double-layered asymmetric split ring resonators[J]. Physica E, 2016, 81: 37-43.

    Jia X L, Wang X O, Meng Q X, et al. Tunable multi-band chiral metamaterials based on double-layered asymmetric split ring resonators[J]. Physica E, 2016, 81: 37-43.

[24] Philip E, Zeki Güngördü M, Pal S, et al. Review on polarization selective terahertz metamaterials: from chiral metamaterials to stereometamaterials[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(9): 1047-1066.

    Philip E, Zeki Güngördü M, Pal S, et al. Review on polarization selective terahertz metamaterials: from chiral metamaterials to stereometamaterials[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(9): 1047-1066.

[25] Cheng Y Z, Nie Y, Cheng Z Z, et al. Chiral metamaterials with giant optical activity and negative refractive index based on complementary conjugate-swastikas structure[J]. Journal of Electromagnetic Waves and Applications, 2013, 27(8): 1068-1076.

    Cheng Y Z, Nie Y, Cheng Z Z, et al. Chiral metamaterials with giant optical activity and negative refractive index based on complementary conjugate-swastikas structure[J]. Journal of Electromagnetic Waves and Applications, 2013, 27(8): 1068-1076.

[26] Cheng Y Z, Huang M L, Chen H R, et al. Influence of the geometry of a gammadion stereo-structure chiral metamaterial on optical properties[J]. Journal of Modern Optics, 2017, 64(15): 1487-1494.

    Cheng Y Z, Huang M L, Chen H R, et al. Influence of the geometry of a gammadion stereo-structure chiral metamaterial on optical properties[J]. Journal of Modern Optics, 2017, 64(15): 1487-1494.

[27] Cheng Y Z, Wu C J, Cheng Z Z, et al. Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator[J]. Progress in Electromagnetics Research, 2016, 155: 105-113.

    Cheng Y Z, Wu C J, Cheng Z Z, et al. Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator[J]. Progress in Electromagnetics Research, 2016, 155: 105-113.

[28] Cheng Y Z, Yang Y L, Zhou Y J, et al. Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves[J]. Journal of Modern Optics, 2016, 63(17): 1675-1680.

    Cheng Y Z, Yang Y L, Zhou Y J, et al. Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves[J]. Journal of Modern Optics, 2016, 63(17): 1675-1680.

[29] Li M H, Song J, Wu F. Ultra-compact chiral metamaterial with negative refractive index based on miniaturized structure[J]. Journal of Magnetism and Magnetic Materials, 2017, 426: 150-154.

    Li M H, Song J, Wu F. Ultra-compact chiral metamaterial with negative refractive index based on miniaturized structure[J]. Journal of Magnetism and Magnetic Materials, 2017, 426: 150-154.

[30] Zarifi D, Soleimani M, Nayyeri V. Dual- and multiband chiral metamaterial structures with strong optical activity and negative refraction index[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 334-337.

    Zarifi D, Soleimani M, Nayyeri V. Dual- and multiband chiral metamaterial structures with strong optical activity and negative refraction index[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 334-337.

[31] He M X, Han J G, Tian Z, et al. Negative refractive index in chiral spiral metamaterials at terahertz frequencies[J]. Optik, 2011, 122(18): 1676-1679.

    He M X, Han J G, Tian Z, et al. Negative refractive index in chiral spiral metamaterials at terahertz frequencies[J]. Optik, 2011, 122(18): 1676-1679.

[32] Cheng Y Z, Gong R Z, Wu L. Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves[J]. Plasmonics, 2017, 12(4): 1113-1120.

    Cheng Y Z, Gong R Z, Wu L. Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves[J]. Plasmonics, 2017, 12(4): 1113-1120.

[33] Li Z F, Zhao R K, Koschny T, et al. Chiral metamaterials with negative refractive index based on four “U” split ring resonators[J]. Applied Physics Letters, 2010, 97(8): 081901.

    Li Z F, Zhao R K, Koschny T, et al. Chiral metamaterials with negative refractive index based on four “U” split ring resonators[J]. Applied Physics Letters, 2010, 97(8): 081901.

[34] Zarifi D, Soleimani M, Nayyeri V. Parameter retrieval of chiral metamaterials based on the causality principle[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2013, 23(5): 610-618.

    Zarifi D, Soleimani M, Nayyeri V. Parameter retrieval of chiral metamaterials based on the causality principle[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2013, 23(5): 610-618.

[35] Han S, Yang H L, Guo L Y, et al. Manipulating linearly polarized electromagnetic waves using the asymmetric transmission effect of planar chiral metamaterials[J]. Journal of Optics, 2014, 16(3): 035105.

    Han S, Yang H L, Guo L Y, et al. Manipulating linearly polarized electromagnetic waves using the asymmetric transmission effect of planar chiral metamaterials[J]. Journal of Optics, 2014, 16(3): 035105.

[36] 孙慧慧, 延凤平, 谭思宇, 等. 磁导率近零太赫兹超材料设计的仿真分析[J]. 中国激光, 2018, 45(6): 0614001.

    孙慧慧, 延凤平, 谭思宇, 等. 磁导率近零太赫兹超材料设计的仿真分析[J]. 中国激光, 2018, 45(6): 0614001.

    Sun H H, Yan F P, Tan S Y, et al. Simulation analysis on design of permeability-near-zero terahertz metamaterials[J]. Chinese Journal of Lasers, 2018, 45(6): 0614001.

    Sun H H, Yan F P, Tan S Y, et al. Simulation analysis on design of permeability-near-zero terahertz metamaterials[J]. Chinese Journal of Lasers, 2018, 45(6): 0614001.

[37] 刘瑶, 陈跃刚. 工型超材料共振研究[J]. 光学学报, 2018, 38(3): 0324001.

    刘瑶, 陈跃刚. 工型超材料共振研究[J]. 光学学报, 2018, 38(3): 0324001.

    Liu Y, Chen Y G. Resonance of I-shaped metamaterials[J]. Acta Optica Sinica, 2018, 38(3): 0324001.

    Liu Y, Chen Y G. Resonance of I-shaped metamaterials[J]. Acta Optica Sinica, 2018, 38(3): 0324001.

[38] Zhang S, Zhou J F, Park Y S, et al. Photoinduced handedness switching in terahertz chiral metamolecules[J]. Nature Communications, 2012, 3: 942.

    Zhang S, Zhou J F, Park Y S, et al. Photoinduced handedness switching in terahertz chiral metamolecules[J]. Nature Communications, 2012, 3: 942.

赵铭茜, 程用志, 陈浩然, 龚荣洲. 太赫兹波段双频带手征性超表面的设计[J]. 光学学报, 2019, 39(4): 0416002. Mingxi Zhao, Yongzhi Cheng, Haoran Chen, Rongzhou Gong. Design of Dual-Band Terahertz Chiral Metasurface[J]. Acta Optica Sinica, 2019, 39(4): 0416002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!