Photonics Research, 2019, 7 (7): 07000A36, Published Online: Jun. 17, 2019  

Chip-based squeezing at a telecom wavelength Download: 562次

Author Affiliations
1 Université Côte d’Azur, CNRS, Institut de Physique de Nice, Parc Valrose, 06108 Nice Cedex 2, France
2 Istituto Nazionale di Ottica (INO-CNR) Largo Enrico Fermi 6, 50125 Firenze, Italy
3 LENS and Department of Physics, Universitá di Firenze, 50019 Sesto Fiorentino, Firenze, Italy
Copy Citation Text

F. Mondain, T. Lunghi, A. Zavatta, E. Gouzien, F. Doutre, M. De Micheli, S. Tanzilli, V. D’Auria. Chip-based squeezing at a telecom wavelength[J]. Photonics Research, 2019, 7(7): 07000A36.

References

[1] LvovskyA. I., Squeezed Light, Photonics Volume 1: Fundamentals of Photonics and Physics, AndrewsD., ed. (Wiley, 2015), pp. 121163.

[2] U. L. Andersen, G. Leuchs, C. Silberhorn. Continuous-variable quantum information processing. Laser Photon. Rev., 2010, 4: 337-354.

[3] N. C. Menicucci, S. T. Flammia, H. Zaidi, O. Pfister. Ultracompact generation of continuous-variable cluster states. Phys. Rev. A, 2007, 76: 010302.

[4] T. Eberle, V. Handchen, J. Duhme, T. Franz, F. Furrer, R. Schnabel, R. F. Werner. Gaussian entanglement for quantum key distribution from a single-mode squeezing source. New J. Phys., 2013, 15: 053049.

[5] C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, S. Lloyd. Gaussian quantum information. Rev. Mod. Phys., 2012, 84: 621-669.

[6] M. Huo, J. Qin, J. Cheng, Z. Yan, Z. Qin, X. Su, X. Jia, C. Xie, K. Peng. Deterministic quantum teleportation through fiber channels. Sci. Adv., 2018, 4: eaas9401.

[7] R. Schnabel. Squeezed states of light and their applications in laser interferometers. Phys. Rep., 2017, 684: 1-51.

[8] U. L. Andersen, T. Gehring, C. Marquardt, G. Leuchs. 30 years of squeezed light generation. Phys. Scr., 2016, 91: 053001.

[9] A. I. Lvovsky, M. G. Raymer. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys., 2009, 81: 299-332.

[10] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, P. Grangier. Generating optical Schrödinger kittens for quantum information processing. Science, 2006, 312: 83-86.

[11] D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards, I. A. Fedorov, A. I. Lvovsky. Enlargement of optical Schrödinger’s cat states. Nat. Photonics, 2017, 11: 379-382.

[12] A. E. Ulanov, D. Sychev, A. A. Pushkina, I. A. Fedorov, A. I. Lvovsky. Quantum teleportation between discrete and continuous encodings of an optical qubit. Phys. Rev. Lett., 2017, 118: 160501.

[13] O. Morin, K. Huang, J. Liu, H. Le Jeannic, C. Fabre, J. Laurat. Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photonics, 2014, 8: 570-574.

[14] M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, R. Schnabel. Squeezed light at 1550  nm with a quantum noise reduction of 12.3  dB. Opt. Express, 2011, 19: 25763-25772.

[15] J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, N. Treps. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photonics, 2013, 8: 109-112.

[16] G. Masada, K. Miyata, A. Politi, T. Hashimoto, J. L. O’Brien, A. Furusawa. Continuous-variable entanglement on a chip. Nat. Photonics, 2015, 9: 316-319.

[17] K. Yoshino, T. Aoki, A. Furusawa. Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides. Appl. Phys. Lett., 2007, 90: 041111.

[18] Y. Eto, T. Tajima, Y. Zhang, T. Hirano. Observation of quadrature squeezing in a χ(2) nonlinear waveguide using a temporally shaped local oscillator pulse. Opt. Express, 2008, 16: 10650-10657.

[19] A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, M. Lipson. On-chip optical squeezing. Phys. Rev. Appl., 2015, 3: 044005.

[20] M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, C. Silberhorn. Waveguide cavity resonator as a source of optical squeezing. Phys. Rev. Appl., 2017, 7: 044026.

[21] C. Porto, D. Rusca, S. Cialdi, A. Crespi, R. Osellame, D. Tamascelli, S. Olivares, M. G. A. Paris. Detection of squeezed light with glass-integrated technology embedded into a homodyne detector setup. J. Opt. Soc. Am. B, 2018, 35: 1596-1602.

[22] F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, J. C. F. Matthews. A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers. Quantum Sci. Technol., 2018, 3: 025003.

[23] F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. Viet Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, M. Lobino. Integrated photonic platform for quantum information with continuous variables. Sci. Adv., 2018, 4: eaat9331.

[24] O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, S. Tanzilli. Quantum photonics at telecom wavelengths based on lithium niobate waveguides. J. Opt., 2016, 18: 104001.

[25] F. Y. Hou, L. Yu, X. J. Jiaa, Y. H. Zheng, C. D. Xie, K. C. Peng. Experimental generation of optical non-classical states of light with 1.34  μm wavelength. Eur. Phys. J. D, 2011, 62: 433-437.

[26] F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, S. Tanzilli. A fully guided-wave squeezing experiment for fiber quantum networks. Optica, 2016, 3: 362-365.

[27] T. Umeki, O. Tadanaga, M. Asobe. Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide. IEEE J. Quantum Electron., 2010, 46: 1206-1213.

[28] D. Castaldini, P. Bassi, S. Tascu, P. Aschieri, M. P. De Micheli, P. Baldi. Soft-proton-exchange tapers for low insertion-loss LiNbO3 devices. J. Lightwave Technol., 2007, 25: 1588-1593.

[29] L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. de Micheli, L. Huang, D. J. Bamford. Soft proton exchange on periodically poled LiNbO3: a simple waveguide fabrication process for highly efficient nonlinear interactions. App. Phys. Lett., 2000, 76: 1089-1091.

[30] A. M. Glass, D. von der Linde, D. H. Auston, T. J. Negran. Excited state polarization, bulk photovoltaic effect and the photorefractive effect in electrically polarized media. J. Electron. Mater., 1975, 4: 915-943.

[31] HellwigA., “Nonlinear optical and photorefractive properties of periodically poled channel waveguides in lithium niobate,” Ph.D. thesis (Universitat Paderborn, 2011).

[32] L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, S. Tanzilli. Ultra-fast heralded single photon source based on telecom technology. Laser Photon. Rev., 2015, 9: L1-L5.

[33] M. Pysher, R. Bloomer, C. M. Kaleva, T. D. Roberts, P. Battle, O. Pfister. Broadband amplitude squeezing in a periodically poled KTiOPO4 waveguide. Opt. Lett., 2009, 34: 256-258.

[34] D. Barral, M. G. Thompson, J. Linares. Detection of two-mode spatial quantum states of light by electro-optic integrated directional couplers. J. Opt. Soc. Am. B, 2015, 32: 1165-1173.

[35] D. E. Zelmon, D. L. Small, D. Jundt. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5  mol.% magnesium oxide-doped lithium niobate. J. Opt. Soc. Am. B, 1997, 14: 3319-3322.

[36] J. Appel, D. Hoffman, E. Figueroa, A. I. Lvovsky. Electronic noise in optical homodyne tomography. Phys. Rev. A, 2007, 75: 035802.

F. Mondain, T. Lunghi, A. Zavatta, E. Gouzien, F. Doutre, M. De Micheli, S. Tanzilli, V. D’Auria. Chip-based squeezing at a telecom wavelength[J]. Photonics Research, 2019, 7(7): 07000A36.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!