激光与光电子学进展, 2019, 56 (4): 041603, 网络出版: 2019-07-31   

一种光控的电磁诱导透明太赫兹超材料 下载: 1326次

Terahertz Metamaterial Based on Controllable Electromagnetic Induced Transparency Structure
作者单位
1 枣庄学院光电工程学院, 山东 枣庄 277160
2 天津大学精密仪器与光电子工程学院, 激光与光电子研究所, 天津 300072
引用该论文

王娅茹, 梁兰菊, 杨茂生, 王旭娟, 王岩. 一种光控的电磁诱导透明太赫兹超材料[J]. 激光与光电子学进展, 2019, 56(4): 041603.

Yaru Wang, Lanju Liang, Maosheng Yang, Xujuan Wang, Yan Wang. Terahertz Metamaterial Based on Controllable Electromagnetic Induced Transparency Structure[J]. Laser & Optoelectronics Progress, 2019, 56(4): 041603.

参考文献

[1] Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: Optics in coherent media[J]. Reviews of Modern Physics, 2005, 77(2): 633.

[2] Chiam S Y, Singh R, Rockstuhl C, et al. Analogue of electromagnetically induced transparency in a terahertz metamaterial[J]. Physical Review B, 2009, 80(15): 153103.

[3] Li Z Y, Ma Y F, Huang R, et al. Manipulating the plasmon-induced transparency in terahertz metamaterials[J]. Optics Express, 2011, 19(9): 8912-8919.

[4] Papasimakis N, Fedotov V A, Zheludev N I, et al. Metamaterial analog of electromagnetically induced transparency[J]. Physical Review Letters, 2008, 101(25): 253903.

[5] Tassin P, Zhang L, Koschny T, et al. Low-loss metamaterials based on classical electromagnetically induced transparency[J]. Physical Review Letters, 2009, 102(5): 053901.

[6] Papasimakis N, Fu Y H, Fedotov V A, et al. Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency[J]. Applied Physics Letters, 2009, 94(21): 211902.

[7] Tassin P, Zhang L, Koschny T, et al. Planar designs for electromagnetically induced transparency in metamaterials[J]. Optics Express, 2009, 17(7): 5595-5605.

[8] Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 2008, 101(4): 047401.

[9] Yannopapas V, Paspalakis E, Vitanov N V. Electromagnetically induced transparency and slow light in an array of metallic nanoparticles[J]. Physical Review B, 2009, 80(3): 035104.

[10] Liu N, Langguth L, Weiss T, et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit[J]. Nature Materials, 2009, 8(9): 758-762.

[11] 李广森, 延凤平, 王伟, 等. 基于三维耦合的多波段宽带电磁诱导透明分析[J]. 激光与光电子学进展, 2018, 55(12): 123003.

    Li G S, Yan F P, Wang W, et al. Analysis of multiband and broadband electromagnetically induced transparency based on three-dimensional coupling[J]. Laser & Optoelectronics Progress, 2018, 55(12): 123003.

[12] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究[J]. 物理学报, 2017, 66(10): 100202.

    Ning R X, Bao J, Jiao Z. Wide band electromagnetically induced transparency in graphene metasurface of composite structure[J]. Acta Physica Sinica, 2017, 66(10): 100202.

[13] Kekatpure R D, Barnard E S, Cai W S, et al. Phase-coupled plasmon-induced transparency[J]. Physical Review Letters, 2010, 104(24): 243902.

[14] Yao Y, Kats M A, Shankar R, et al. Wide wavelength tuning of optical antennas on graphene with nanosecond response time[J]. Nano Letters, 2014, 14(1): 214-219.

[15] Zhu Z H, Guo C C, Liu K, et al. Electrically tunable polarizer based on anisotropic absorption of graphene ribbons[J]. Applied Physics A, 2014, 114(4): 1017-1021.

[16] Zhang Y, Feng Y J, Zhu B, et al. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency[J]. Optics Express, 2014, 22(19): 22743-22752.

[17] Ding J, Arigong B, Ren H, et al. Tunable complementary metamaterial structures based on graphene for single and multiple transparency windows[J]. Scientific Reports, 2015, 4: 6128.

[18] 高红, 延凤平, 谭思宇, 等. 基于有图案石墨烯的超薄宽带太赫兹超材料吸收体的设计[J]. 中国激光, 2017, 44(7): 0703024.

    Gao H, Yan F P, Tan S Y, et al. Design of ultra-thin broadband terahertz metamaterial absorber based on patterned graphene[J]. Chinese Journal of Lasers, 2017, 44(7): 0703024.

[19] 范天馨, 张惠芳, 李勇, 等. 石墨烯和对称开口谐振环超材料中可调谐的双等离激元诱导透明现象[J]. 光子学报, 2017, 46(8): 0816004.

    Fan T X, Zhang H F, Li Y, et al. Tunable double plasmon-induced transparency windows in metamaterial formed by symmetric graphene and split ring resonators structure[J]. Acta Photonica Sinica, 2017, 46(8): 0816004.

[20] Gu J Q, Singh R, Liu X J, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications, 2012, 3: 1151.

[21] Shen N H, Massaouti M, Gokkavas M, et al. Optically implemented broadband blueshift switch in the terahertz regime[J]. Physical Review Letters, 2011, 106(3): 037403.

[22] Peng B, Özdemir Ş K, Chen W J, et al. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities[J]. Nature Communications, 2014, 5: 5082.

[23] Tan W, Sun Y, Wang Z G, et al. Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings[J]. Applied Physics Letters, 2014, 104(9): 091107.

[24] Joannopoulos JD, Johnson SG, Winn JN, et al.Photonic Crystals: Molding the Flow of Light[M]. USA: Princeton University Press, 2011.

[25] Haus HA. Waves and fields in optoelectronics[M]. Englewood Cliffs, NJ: Prentice-Hall, 1984.

王娅茹, 梁兰菊, 杨茂生, 王旭娟, 王岩. 一种光控的电磁诱导透明太赫兹超材料[J]. 激光与光电子学进展, 2019, 56(4): 041603. Yaru Wang, Lanju Liang, Maosheng Yang, Xujuan Wang, Yan Wang. Terahertz Metamaterial Based on Controllable Electromagnetic Induced Transparency Structure[J]. Laser & Optoelectronics Progress, 2019, 56(4): 041603.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!