激光与光电子学进展, 2021, 58 (6): 0629001, 网络出版: 2021-03-06  

基于机器学习的椭球颗粒群消光系数预测 下载: 502次

Prediction of Extinction Coefficient of Ellipsoid Particle Group Based on Machine Learning
作者单位
1 南京信息工程大学物理与光电工程学院,江苏 南京 210044
2 南京信息工程大学江苏省大气海洋光电探测重点实验室,江苏 南京 210044
引用该论文

张晓浩, 陈功叶, 李浩淼, 彭浩辰, 曹兆楼. 基于机器学习的椭球颗粒群消光系数预测[J]. 激光与光电子学进展, 2021, 58(6): 0629001.

Zhang Xiaohao, Chen Gongye, Li Haomiao, Peng Haochen, Cao Zhaolou. Prediction of Extinction Coefficient of Ellipsoid Particle Group Based on Machine Learning[J]. Laser & Optoelectronics Progress, 2021, 58(6): 0629001.

参考文献

[1] Dazon C, Porcheron E, Journeau C, et al. Characterization of chemical composition and particle size distribution of aerosols released during laser cutting of fuel debris simulants[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103872.

[2] Kangasluoma J, Cai R L, Jiang J K, et al. Overview of measurements and current instrumentation for 1--10 nm aerosol particle number size distributions[J]. Journal of Aerosol Science, 2020, 148: 105584.

[3] Ling Y, Wang Y Y, Duan J Y, et al. Long-term aerosol size distributions and the potential role of volatile organic compounds (VOCs) in new particle formation events in Shanghai[J]. Atmospheric Environment, 2019, 202: 345-356.

[4] Postelmans A, Aernouts B, Jordens J, et al. Milk homogenization monitoring: fat globule size estimation from scattering spectra of milk[J]. Innovative Food Science & Emerging Technologies, 2020, 60: 102311.

[5] Lin C J, Shen J Q, Wang T E. Multi-parameter regularization method for particle sizing of forward light scattering[J]. Journal of Modern Optics, 2017, 64(8): 787-798.

[6] Mao J D, Qin X Z, Li J, et al. Inversion of particle size distributions based on wavelet analysis[J]. International Journal of Remote Sensing, 2018, 39(6): 1817-1835.

[7] Ferri F, Bassini A, Paganini E. Modified version of the Chahine algorithm to invert spectral extinction data for particle sizing[J]. Applied Optics, 1995, 34(25): 5829-5839.

[8] Li M Z, Wilkinson D. Particle size distribution determination from spectral extinction using evolutionary programming[J]. Chemical Engineering Science, 2001, 56(10): 3045-3052.

[9] He Z Z, Qi H, Yao Y C, et al. Inverse estimation of the particle size distribution using the fruit fly optimization algorithm[J]. Applied Thermal Engineering, 2015, 88: 306-314.

[10] Sun X G, Tang H, Dai J M. Retrieval of particle size distribution in the dependent model using the moment method[J]. Optics Express, 2007, 15(18): 11507-11516.

[11] Nascimento C A O, Guardani R, Giulietti M. Use of neural networks in the analysis of particle size distributions by laser diffraction[J]. Powder Technology, 1997, 90(1): 89-94.

[12] Moon C Y, Gargiulo A, Byun G, et al. Non-spherical particle size estimation using supervised machine learning[J]. Applied Optics, 2020, 59(10): 3237-3245.

[13] Coppens P, Deriemaeker L, Finsy R. Shape and size determination by laser diffraction: feasibility of data analysis by neural networks[J]. Particle & Particle Systems Characterization, 2000, 17(3): 117-125.

[14] Mishchenko M I, Travis L D, Mackowski D W. T-matrix computations of light scattering bynonspherical particles: a review[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1996, 55(5): 535-575.

[15] Sun W B, Videen G, Fu Q, et al. Scattered-field FDTD and PSTD algorithms with CPML absorbing boundary conditions for light scattering by aerosols[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 131: 166-174.

[16] Dossou K B, Botten L C. A combined three-dimensional finite element and scattering matrix method for the analysis of plane wave diffraction by bi-periodic, multilayered structures[J]. Journal of Computational Physics, 2012, 231(20): 6969-6989.

[17] Fournier G R. Evans B T N. Approximation to extinction efficiency for randomly oriented spheroids[J]. Applied Optics, 1991, 30(15): 2042-2048.

[18] Sun X G, Tang H, Yuan G B. Anomalous diffraction approximation method for retrieval of spherical and spheroidal particle size distributions in total light scattering[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(1): 89-106.

[19] Jalava J P, Taavitsainen V M, Haario H, et al. Determination of particle and crystal size distribution from turbidity spectrum of TiO2 pigments by means of T-matrix[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 60(3): 399-409.

[20] Nousiainen T, Kahnert M, Veihelmann B. Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 101(3): 471-487.

[21] Tang H, Lin J Z. Retrieval of spheroid particle size distribution from spectral extinction data in the independent mode using PCA approach[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 115: 78-92.

张晓浩, 陈功叶, 李浩淼, 彭浩辰, 曹兆楼. 基于机器学习的椭球颗粒群消光系数预测[J]. 激光与光电子学进展, 2021, 58(6): 0629001. Zhang Xiaohao, Chen Gongye, Li Haomiao, Peng Haochen, Cao Zhaolou. Prediction of Extinction Coefficient of Ellipsoid Particle Group Based on Machine Learning[J]. Laser & Optoelectronics Progress, 2021, 58(6): 0629001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!