Photonics Research, 2021, 9 (1): 01000001, Published Online: Dec. 4, 2020   

All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories Download: 586次

Author Affiliations
Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Ciudad Universitaria s/n, Madrid 28040, Spain
Copy Citation Text

José A. Rodrigo, Mercedes Angulo, Tatiana Alieva. All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories[J]. Photonics Research, 2021, 9(1): 01000001.

References

[1] P. M. Bendix, L. Jauffred, K. Norregaard, L. B. Oddershede. Optical trapping of nanoparticles and quantum dots. IEEE J. Sel. Top. Quantum Electron., 2014, 20: 4800112.

[2] A. S. Urban, S. Carretero-Palacios, A. A. Lutich, T. Lohmüller, J. Feldmann, F. Jäckel. Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives. Nanoscale, 2014, 6: 4458-4474.

[3] P. Zemánek, G. Volpe, A. Jonáš, O. Brzobohatý. Perspective on light-induced transport of particles: from optical forces to phoretic motion. Adv. Opt. Photon., 2019, 11: 577-678.

[4] M. Dienerowitz, M. Mazilu, K. Dholakia. Optical manipulation of nanoparticles: a review. J. Nanophoton., 2008, 2: 021875.

[5] C. Bradac. Nanoscale optical trapping: a review. Adv. Opt. Mater., 2018, 6: 1800005.

[6] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 1986, 11: 288-290.

[7] K. Svoboda, S. M. Block. Optical trapping of metallic Rayleigh particles. Opt. Lett., 1994, 19: 930-932.

[8] S. N. S. Reihani, L. B. Oddershede. Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations. Opt. Lett., 2007, 32: 1998-2000.

[9] F. Hajizadeh, S. N. S. Reihani. Optimized optical trapping of gold nanoparticles. Opt. Express, 2010, 18: 551-559.

[10] A. Ohlinger, S. Nedev, A. A. Lutich, J. Feldmann. Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap. Nano Lett., 2011, 11: 1770-1774.

[11] L. Chuntonov, G. Haran. Trimeric plasmonic molecules: the role of symmetry. Nano Lett., 2011, 11: 2440-2445.

[12] M. Blattmann, A. Rohrbach. Plasmonic coupling dynamics of silver nanoparticles in an optical trap. Nano Lett., 2015, 15: 7816-7821.

[13] H. Kermani, A. Rohrbach. Orientation-control of two plasmonically coupled nanoparticles in an optical trap. ACS Photon., 2018, 5: 4660-4667.

[14] B. Sun, Y. Roichman, D. D. G. Grier. Theory of holographic optical trapping. Opt. Express, 2008, 16: 15765-15776.

[15] Y. Y. Roichman, B. Sun, Y. Y. Roichman, J. Amato-Grill, D. G. Grier. Optical forces arising from phase gradients. Phys. Rev. Lett., 2008, 100: 013602.

[16] J. A. Rodrigo, T. Alieva. Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond. Optica, 2015, 2: 812-815.

[17] D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T. Lim, C.-W. W. Qiu. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl., 2017, 6: e17039.

[18] P. Figliozzi, N. Sule, Z. Yan, Y. Bao, S. Burov, S. K. Gray, S. A. Rice, S. Vaikuntanathan, N. F. Scherer. Driven optical matter: dynamics of electrodynamically coupled nanoparticles in an optical ring vortex. Phys. Rev. E, 2017, 95: 022604.

[19] P. Figliozzi, C. W. Peterson, S. A. Rice, N. F. Scherer. Direct visualization of barrier crossing dynamics in a driven optical matter system. ACS Nano, 2018, 12: 5168-5175.

[20] Y. Yifat, D. Coursault, C. W. Peterson, J. Parker, Y. Bao, S. K. Gray, S. A. Rice, N. F. Scherer. Reactive optical matter: light-induced motility in electrodynamically asymmetric nanoscale scatterers. Light Sci. Appl., 2018, 7: 105.

[21] C. W. Peterson, J. Parker, S. A. Rice, N. F. Scherer. Controlling the dynamics and optical binding of nanoparticle homodimers with transverse phase gradients. Nano Lett., 2019, 19: 897-903.

[22] J. A. Rodrigo, T. Alieva. Light-driven transport of plasmonic nanoparticles on demand. Sci. Rep., 2016, 6: 33729.

[23] K. Dholakia, P. Zemánek. Colloquium: gripped by light: optical binding. Rev. Mod. Phys., 2010, 82: 1767-1791.

[24] Z. Yan, R. A. Shah, G. Chado, S. K. Gray, M. Pelton, N. F. Scherer. Guiding spatial arrangements of silver nanoparticles by optical binding interactions in shaped light fields. ACS Nano, 2013, 7: 1790-1802.

[25] Z. Yan, S. K. Gray, N. F. Scherer. Potential energy surfaces and reaction pathways for light-mediated self-organization of metal nanoparticle clusters. Nat. Commun., 2014, 5: 3751.

[26] Z. Yan, M. Sajjan, N. F. Scherer. Fabrication of a material assembly of silver nanoparticles using the phase gradients of optical tweezers. Phys. Rev. Lett., 2015, 114: 143901.

[27] F. Han, J. Parker, Y. Yifat, C. Peterson, S. Gray, N. Scherer, Z. Yan. Crossover from positive to negative optical torque in mesoscale optical matter. Nat. Commun, 2018, 9: 4897.

[28] J. A. Rodrigo, M. Angulo, T. Alieva. Dynamic morphing of 3D curved laser traps for all-optical manipulation of particles. Opt. Express, 2018, 26: 18608-18620.

[29] P. C. Chaumet, M. Nieto-Vesperinas. Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt. Lett., 2000, 25: 1065-1067.

[30] V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, F. J. García de Abajo. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev., 2008, 37: 1792-1805.

[31] J. A. Rodrigo, T. Alieva. Polymorphic beams and Nature inspired circuits for optical current. Sci. Rep., 2016, 6: 35341.

[32] A. M. Amaral, E. A. Filho, C. B. de Araújo. Characterization of topological charge and orbital angular momentum of shaped optical vortices. Opt. Express, 2014, 22: 30315-30324.

[33] L. Shao, M. Käll. Light-driven rotation of plasmonic nanomotors. Adv. Funct. Mater., 2018, 28: 1706272.

[34] N. Sule, Y. Yifat, S. K. Gray, N. F. Scherer. Rotation and negative torque in electrodynamically bound nanoparticle dimers. Nano Lett., 2017, 17: 6548-6556.

[35] B. Leimkuhler, C. Matthews. Rational construction of stochastic numerical methods for molecular sampling. Appl. Math. Res. Express, 2013, 2013: 34-56.

[36] N. Sule, S. A. Rice, S. K. Gray, N. F. Scherer. An electrodynamics-Langevin dynamics (ED-LD) approach to simulate metal nanoparticle interactions and motion. Opt. Express, 2015, 23: 29978-29992.

[37] M. Sachs, B. Leimkuhler, V. Danos. Langevin dynamics with variable coefficients and nonconservative forces: from stationary states to numerical methods. Entropy, 2017, 19: 647.

[38] ZwanzigR., Nonequilibrium Statistical Mechanics (Oxford University, 2001).

[39] J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, I. Moreno. Encoding amplitude information onto phase-only filters. Appl. Opt., 1999, 38: 5004-5013.

[40] J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, K. W. Eliceiri. Trackmate: an open and extensible platform for single-particle tracking. Methods, 2017, 115: 80-90.

[41] J. A. Rodrigo, J. M. Soto, T. Alieva. Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells. Biomed. Opt. Express, 2017, 8: 5507-5517.

[42] G. Baffou, P. Berto, E. B. Ureña, R. Quidant, S. Monneret, J. Polleux, H. Rigneault. Photoinduced heating of nanoparticle arrays. ACS Nano, 2013, 7: 6478-6488.

[43] A. Yevick, D. B. Ruffner, D. G. Grier. Tractor beams in the Rayleigh limit. Phys. Rev. A, 2016, 93: 043807.

[44] E. R. Shanblatt, D. G. Grier. Extended and knotted optical traps in three dimensions. Opt. Express, 2011, 19: 5833-5838.

[45] J. A. Rodrigo, M. Angulo, T. Alieva. Programmable optical transport of particles in knot circuits and networks. Opt. Lett., 2018, 43: 4244-4247.

José A. Rodrigo, Mercedes Angulo, Tatiana Alieva. All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories[J]. Photonics Research, 2021, 9(1): 01000001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!