Photonics Research, 2020, 8 (1): 01000091, Published Online: Dec. 23, 2019  

Nonequilibrium hot-electron-induced wavelength-tunable incandescent-type light sources Download: 953次

Author Affiliations
1 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
4 School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China
5 e-mail: cxshan@zzu.edu.cn
6 e-mail: shendz@ciomp.ac.cn
Copy Citation Text

Zhipeng Sun, Mingming Jiang, Wangqi Mao, Caixia Kan, Chongxin Shan, Dezhen Shen. Nonequilibrium hot-electron-induced wavelength-tunable incandescent-type light sources[J]. Photonics Research, 2020, 8(1): 01000091.

References

[1] X. Li, J. Zhu, B. Wei. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem. Soc. Rev., 2016, 45: 3145-3187.

[2] Z. Yang, K. Du, F. Lu, Y. Pang, S. Hua, X. Gan, W. Zhang, S. J. Chua, T. Mei. Silica nanocone array as a template for fabricating a plasmon induced hot electron photodetector. Photon. Res., 2019, 7: 294-299.

[3] P. Wang, A. V. Krasavin, M. E. Nasir, W. Dickson, A. V. Zayats. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials. Nat. Nanotechnol., 2018, 13: 159-164.

[4] I. F. Teixeira, E. C. M. Barbosa, S. C. E. Tsang, P. H. C. Camargo. Carbon nitrides and metal nanoparticles: from controlled synthesis to design principles for improved photocatalysis. Chem. Soc. Rev., 2018, 47: 7783-7817.

[5] K. Zhang, Y. Liu, J. Zhao, B. Liu. Nanoscale tracking plasmon-driven photocatalysis in individual nanojunctions by vibrational spectroscopy. Nanoscale, 2018, 10: 21742-21747.

[6] S. Kahmann, M. A. Loi. Hot carrier solar cells and the potential of perovskites for breaking the Shockley–Queisser limit. J. Mater. Chem. C, 2019, 7: 2471-2486.

[7] B. Huang, Z. Kang, J. Li, M. Liu, P. Tang, L. Miao, C. Zhao, G. Qin, W. Qin, S. Wen, P. N. Prasad. Broadband mid-infrared nonlinear optical modulator enabled by gold nanorods: towards the mid-infrared regime. Photon. Res., 2019, 7: 699-704.

[8] S. K. Cushing, C. J. Chen, C. L. Dong, X. T. Kong, A. O. Govorov, R. S. Liu, N. Wu. Tunable nonthermal distribution of hot electrons in a semiconductor injected from a plasmonic gold nanostructure. ACS Nano, 2018, 12: 7117-7126.

[9] S. Tan, A. Argondizzo, J. Ren, L. Liu, Z. Jin, H. Petek. Plasmonic coupling at a metal/semiconductor interface. Nat. Photonics, 2017, 11: 806-812.

[10] S. Tan, Y. Dai, S. Zhang, L. Liu, J. Zhao, H. Petek. Coherent electron transfer at the Ag/graphite heterojunction interface. Phys. Rev. Lett., 2018, 120: 126801.

[11] R. Sundararaman, P. Narang, A. S. Jermyn, H. A. Atwater. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun., 2014, 5: 5788.

[12] J. Feng, C. Gao, Y. Ying. Nanoscale tracking plasmon-driven photocatalysis in individual nanojunctions by vibrational spectroscopy. Nanoscale, 2018, 10: 20492-20504.

[13] A. M. Brown, R. Sundararaman, P. Narang, H. A. Atwater. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano, 2015, 10: 957-966.

[14] H. Lee, J. Lim, C. Lee, S. Back, K. An, J. W. Shin, R. Ryoo, Y. Jung, J. Y. Park. Boosting hot electron flux and catalytic activity at metal-oxide interfaces of PtCo bimetallic nanoparticles. Nat. Commun., 2018, 9: 2335.

[15] T. Mohammad, T. Hossein, X. Zihao, L. Kyu-Tae, R. Sean, Y. Jiahao, A. Ali, L. Tianquan, C. Wenshan. Ultrafast control of phase and polarization of light expedited by hot electron transfer. Nano Lett., 2018, 18: 5544-5551.

[16] S. A. K. Cushing. Plasmonic hot carriers skip out in femtoseconds. Nat. Photonics, 2017, 11: 748-749.

[17] A. Pescaglini, A. Martin, D. Cammi, G. Juska, C. Ronning, E. Pelucchi, D. Iacopino. Hot-electron injection in Au nanorod-ZnO nanowire hybrid device for near-infrared photodetection. Nano Lett., 2014, 14: 6202-6209.

[18] G. Lozano, S. R. Rodriguez, M. A. Verschuuren, J. G. Rivas. Metallic nanostructures for efficient led lighting. Light Sci. Appl., 2016, 5: e16080.

[19] Y. Liu, M. Jiang, Z. Zhang, B. Li, H. Zhao, C. Shan, D. Shen. Electrically excited hot-electron dominated fluorescent emitters using individual Ga-doped ZnO microwires via metal quasiparticle film decoration. Nanoscale, 2018, 10: 5678-5688.

[20] J. H. Park, Y. K. Dong, E. F. Schubert, J. Cho, J. K. Kim. Fundamental limitations of wide-bandgap semiconductors for light-emitting diodes. ACS Energy Lett., 2018, 3: 655-662.

[21] P. Zilio, M. Dipalo, F. Tantussi, G. C. Messina, F. D. Angelis. Hot electrons in water: injection and ponderomotive acceleration by means of plasmonic nanoelectrodes. Light Sci. Appl., 2017, 6: e17002.

[22] S. Wang, J. Wang, W. Zhao, F. Giustiniano, L. Chu, I. Verzhbitskiy, Y. J. Zhou, G. Eda. Efficient carrier-to-exciton conversion in field emission tunnel diodes based on MIS-type van der Waals heterostack. Nano Lett., 2017, 17: 5156-5162.

[23] B. Palash, B. Alexandre, N. Lukas. Electrical excitation of surface plasmons. Phys. Rev. Lett., 2011, 106: 226802.

[24] W. Cai, R. Sainidou, J. Xu, A. Polman, F. J. G. de Abajo. Efficient generation of propagating plasmons by electron beams. Nano Lett., 2009, 9: 1176-1181.

[25] H. Wei, D. Pan, S. Zhang, Z. Li, Q. Li, N. Liu, W. Wang, H. Xu. Plasmon waveguiding in nanowires. Chem. Rev., 2018, 118: 2882-2926.

[26] M. Cohen, Y. Abulafia, R. Shavit, Z. Zalevsky. Secondary electron imaging of light at the nanoscale. ACS Nano, 2017, 11: 3274-3281.

[27] M. Buret, A. V. Uskov, J. Dellinger, N. Cazier, M.-M. Mennemanteuil, J. Berthelot, I. V. Smetanin, I. E. Protsenko, G. Colas-des Francs, A. Bouhelier. Spontaneous hot-electron light emission from electron-fed optical antennas. Nano Lett., 2015, 15: 5811-5818.

[28] S. Ganti, P. J. King, E. Arac, K. Dawson, M. J. Heikkil, J. H. Quilter, B. Murdoch, P. Cumpson, A. O’Neill. Voltage controlled hot carrier injection enables ohmic contacts using Au island metal films on Ge. ACS Appl. Mater. Interfaces, 2017, 9: 27357-27364.

[29] M. K. Seo, K. C. Huang, M. L. Brongersma. Electrically driven subwavelength optical nanocircuits. Nat. Photonics, 2014, 8: 244-249.

[30] Y. Y. Cai, J. G. Liu, L. J. Tauzin, D. Huang, E. Sung, H. Zhang, A. Joplin, W. S. Chang, P. Nordlander, S. Link. Photoluminescence of gold nanorods: Purcell effect enhanced emission from hot carriers. ACS Nano, 2018, 12: 976-985.

[31] G. Wei, B. Xu, H. L. Dai. Super bright luminescent metallic nanoparticles. J. Phys. Chem. Lett., 2018, 9: 4155-4159.

[32] S. Kahmann, M. A. Loi. Plexcitonics — fundamental principles and optoelectronic applications. J. Mater. Chem. C, 2019, 7: 1821-1853.

[33] Y. Fang, W.-S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, S. Link. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio. ACS Nano, 2012, 6: 7177-7184.

[34] S. Tan, L. Liu, Y. Dai, J. Ren, J. Zhao, H. Petek. Ultrafast plasmon-enhanced hot electron generation at Ag nanocluster/graphite heterojunctions. J. Am. Chem. Soc., 2017, 139: 6160-6168.

[35] C. Karnetzky, P. Zimmermann, C. Trummer, C. D. Sierra, W. Martin, R. Kienberger, A. Holleitner. Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters. Nat. Commun., 2018, 9: 2471.

[36] R.-J. Shiue, Y. Gao, C. Tan, C. Peng, J. Zheng, D. K. Efetov, Y. D. Kim, J. Hone, D. Englund. Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity. Nat. Commun., 2019, 10: 109.

[37] B. Zhao, W. Fei, H. Chen, L. Zheng, L. Su, D. Zhao, X. Fang. An ultrahigh responsivity (9.7 mA·W–1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv. Funct. Mater., 2017, 27: 1700264.

[38] G. H. He, M. M. Jiang, L. Dong, Z. Zhang, D. Shen. Near-infrared light-emitting devices from individual heavily Ga-doped ZnO microwires. J. Mater. Chem. C, 2017, 5: 2542-2551.

[39] B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, D. Zhao. Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire. Nano Lett., 2015, 15: 3988-3993.

[40] M. Ding, D. Zhao, B. Yao, E. Shulin, Z. Guo, L. Zhang, D. Shen. The ultraviolet laser from individual ZnO microwire with quadrate cross section. Opt. Express, 2012, 20: 13657-13662.

[41] Y. Ni, C. Kan, L. He, X. Zhu, M. Jiang, D. Shi. Alloyed Au-Ag nanorods with desired plasmonic properties and stability in harsh environments. Photon. Res., 2019, 7: 558-565.

[42] W. Zhang, M. Caldarola, B. Pradhan, M. Orrit. Gold nanorod enhanced fluorescence enables single-molecule electrochemistry of methylene blue. Angew. Chem., 2017, 129: 3620-3623.

[43] P. Pramod, K. G. Thomas. Plasmon coupling in dimers of Au nanorods. Adv. Mater., 2008, 20: 4300-4305.

[44] C.-C. Hou, H.-M. Chen, J.-C. Zhang, N. Zhuo, Y.-Q. Huang, R. A. Hogg, D. T. Childs, J.-Q. Ning, Z.-G. Wang, F.-Q. Liu, Z.-Y. Zhang. Near-infrared and mid-infrared semiconductor broadband light emitters. Light Sci. Appl., 2018, 7: 17170.

[45] M. Jiang, G. He, H. Chen, Z. Zhang, L. Zheng, C. Shan, D. Shen, X. Fang. Wavelength-tunable electroluminescent light sources from individual Ga-doped ZnO microwires. Small, 2017, 13: 1604034.

[46] Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, H. Misawa. Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. J. Phys. Chem. Lett., 2010, 1: 2031-2036.

[47] G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee, S. T. Lee. Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays. Adv. Mater., 2008, 20: 168-173.

[48] M. Jiang, W. Mao, X. Zhou, C. Kan, D. Shi. Wavelength-tunable waveguide emissions from electrically driven single ZnO/ZnO:Ga superlattice microwires. ACS Appl. Mater. Interfaces, 2019, 11: 11800-11811.

[49] F. Kim, J. H. Song, P. Yang. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc., 2002, 124: 14316-14317.

[50] W. T. Ruane, K. M. Johansen, K. D. Leedy, D. C. Look, W. H. Von, M. Grundmann, G. C. Farlow, L. J. Brillson. Defect segregation and optical emission in ZnO nano- and microwires. Nanoscale, 2016, 8: 7631-7637.

[51] X. Liu, Q. Zhang, J. N. Yip, Q. Xiong, T. C. Sum. Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein–Moss effect. Nano Lett., 2013, 13: 5336-5343.

[52] Y. Liu, M. Jiang, G. He, S. Li, Z. Zhang, B. Li, H. Zhao, C. Shan, D. Z. Shen. Wavelength-tunable ultraviolet electroluminescence from Ga-doped ZnO microwires. ACS Appl. Mater. Interfaces, 2017, 9: 40743-40751.

[53] F. F. Qin, C. X. Xu, Q. X. Zhu, J. F. Lu, D. T. You, W. Xu, Z. Zhu, A. G. Manohari, F. Chen. Extra green light induced ZnO ultraviolet lasing enhancement assisted by Au surface plasmons. Nanoscale, 2017, 10: 623-627.

[54] C. De Melo, M. Jullien, Y. Battie, A. En Naciri, J. Ghanbaja, F. Montaigne, J. F. Pierson, F. Rigoni, N. Almqvist, A. Vomiero, S. Migot, F. Mucklich, D. Horwat. Tunable localized surface plasmon resonance and broadband visible photoresponse of Cu nanoparticles/ZnO surfaces. ACS Appl. Mater. Interfaces, 2018, 10: 40958-40965.

[55] S. Liu, M.-Y. Li, D. Su, M. Yu, H. Kan, H. Liu, X. Wang, S. Jiang. Broadband high sensitivity ZnO colloidal quantum dots/self-assembled Au nanoantennas heterostructures photodetectors. ACS Appl. Mater. Interfaces, 2018, 10: 32516-32525.

[56] Z. Zhang, Y. Ning, X. Fang. From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photodetectors. J. Mater. Chem. C, 2019, 7: 223-229.

[57] W. Xu, Y. Shi, F. Ren, D. Zhou, L. Su, Q. Liu, L. Cheng, J. Ye, D. Chen, R. Zhang, Y. Zheng, H. Lu. Magnesium ion-implantation-based gallium nitride p-i-n photodiode for visible-blind ultraviolet detection. Photon. Res., 2019, 7: B48-B54.

[58] K. Hu, F. Teng, L. Zheng, P. Yu, Z. Zhang, H. Chen, X. Fang. Binary response Se/ZnO p-n heterojunction UV photodetector with high on/off ratio and fast speed. Laser Photon. Rev., 2017, 11: 1600257.

[59] Y. Ning, Z. Zhang, F. Teng, X. Fang. Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small, 2018, 14: 1703754.

[60] B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, N. J. Halas. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat. Commun., 2015, 6: 7797.

[61] A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, N. J. Halas. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun., 2013, 4: 1643.

[62] P. B. Johnson, R.-W. Christy. Optical constants of the noble metals. Phys. Rev. B, 1972, 6: 4370-4379.

[63] N. Han, F. Wang, J. J. Hou, S. P. Yip, H. Lin, F. Xiu, M. Fang, Z. Yang, X. Shi, G. Dong, T. F. Hung, J. C. Ho. Tunable electronic transport properties of metal-cluster-decorated III–V nanowire transistors. Adv. Mater., 2013, 25: 4445-4451.

[64] H. Shan, Y. Yu, X. Wang, Y. Luo, S. Zu, B. Du, T. Han, B. Li, Y. Li, J. Wu, F. Lin, K. Shi, B. K. Tay, Z. Liu, X. Zhu, Z. Fang. Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime. Light Sci. Appl., 2019, 8: 9.

[65] K. H. Shokri, J. H. Yun, Y. Paik, J. Kim, W. A. Anderson, S. J. Kim. Plasmon field effect transistor for plasmon to electric conversion and amplification. Nano Lett., 2015, 16: 250-254.

[66] T. Heilpern, M. Manjare, A. O. Govorov, G. P. Wiederrecht, S. K. Gray, H. Harutyunyan. Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements. Nat. Commun., 2018, 9: 1853.

[67] S. P. Gurunarayanan, N. Verellen, V. S. Zharinov, F. James Shirley, V. V. Moshchalkov, M. Heyns, J. Van de Vondel, I. P. Radu, P. Van Dorpe. Electrically driven unidirectional optical nanoantennas. Nano Lett., 2017, 17: 7433-7439.

[68] J. Zhao, H. Sun, S. Dai, Y. Wang, J. Zhu. Electrical breakdown of nanowires. Nano Lett., 2011, 11: 4647-4651.

[69] Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. S. Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, Y. D. Park. Bright visible light emission from graphene. Nat. Nanotechnol., 2015, 10: 676-682.

[70] G. H. He, M. M. Jiang, Z. Zhang, B. H. Li, H. Zhao, C. X. Shan, D. Shen. Sb-doped ZnO microwires: emitting filament and homojunction light-emitting diodes. J. Mater. Chem. C, 2017, 5: 10938-10946.

[71] P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. C. des Francs, A. Hartschuh, A. Bouhelier. Electrical excitation of surface plasmons by an individual carbon nanotube transistor. Phys. Rev. Lett., 2013, 111: 026804.

[72] T. A. Growden, W. Zhang, E. R. Brown, D. F. Storm, D. J. Meyer, P. R. Berger. Near-UV electroluminescence in unipolar-doped, bipolar-tunneling GaN/AlN heterostructures. Light. Sci. Appl., 2018, 7: 17150.

Zhipeng Sun, Mingming Jiang, Wangqi Mao, Caixia Kan, Chongxin Shan, Dezhen Shen. Nonequilibrium hot-electron-induced wavelength-tunable incandescent-type light sources[J]. Photonics Research, 2020, 8(1): 01000091.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!