Photonics Research, 2019, 7 (12): 12001501, Published Online: Nov. 28, 2019  

All-dielectric three-element transmissive Huygens’ metasurface performing anomalous refraction Download: 819次

Author Affiliations
1 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
2 Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, Guilin 541004, China
3 College of Optical Sciences, The University of Arizona, Tucson, Arizona 85721, USA
4 e-mail: dabombyh@aliyun.com
Copy Citation Text

Chang Liu, Lei Chen, Tiesheng Wu, Yumin Liu, Jing Li, Yu Wang, Zhongyuan Yu, Han Ye, Li Yu. All-dielectric three-element transmissive Huygens’ metasurface performing anomalous refraction[J]. Photonics Research, 2019, 7(12): 12001501.

References

[1] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334: 333-337.

[2] L. Philippe, C. Pierre. Metalenses at visible wavelengths: past, present, perspectives. Laser Photon. Rev., 2017, 11: 1600295.

[3] A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, Y. S. Kivshar. Functional and nonlinear optical metasurfaces. Laser Photon. Rev., 2015, 9: 195-213.

[4] S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett., 2012, 12: 6223-6229.

[5] A. Amir, H. Yu, J. B. Alexander, B. Mahmood, F. Andrei. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun., 2015, 6: 7069.

[6] X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, X. Zhang. An ultrathin invisibility skin cloak for visible light. Science, 2015, 349: 1310-1314.

[7] Y. Huang, Q. Zhao, S. K. Kalyoncu, R. Torun, Y. Lu, F. Capolino, O. Boyraz. Phase-gradient gap-plasmon metasurface based blazed grating for real time dispersive imaging. Appl. Phys. Lett., 2014, 104: 161106.

[8] Z. Wang, X. Ding, K. Zhang, B. Ratni, S. N. Burokur, X. Gu, Q. Wu. Huygens metasurface holograms with the modulation of focal energy distribution. Adv. Opt. Mater., 2018, 6: 1800121.

[9] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 2014, 13: 139-150.

[10] Y. Zhao, X.-X. Liu, A. Alù. Recent advances on optical metasurfaces. J. Opt., 2014, 16: 035403.

[11] V. N. Gururaj, M. S. Vladimir, B. Alexandra. Alternative plasmonic materials: beyond gold and silver. Adv. Mater., 2013, 25: 3264-3294.

[12] A. Amir, H. Yu, B. Mahmood, F. Andrei. A dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 2015, 10: 937-944.

[13] M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, F. Capasso. Polarization-insensitive metalenses at visible wavelength. Nano Lett., 2016, 16: 7229-7234.

[14] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, A. Faraon. High efficiency double wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms. Opt. Express, 2016, 24: 18468-18477.

[15] S. S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, Y. S. Kivshar. Broadband highly efficient dielectric metadevices for polarization control. APL Photon., 2016, 1: 030801.

[16] Z. Guoxing, M. Holger, K. Mitchell, L. Guixin, Z. Thomas, Z. Shuang. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 2015, 10: 308-312.

[17] L. Dianmin, F. Pengyu, H. Erez, L. B. Mark. Dielectric gradient metasurface optical elements. Science, 2016, 345: 298-302.

[18] R. C. Devlin, K. Mohammadreza, W. T. Chen, J. Oh, F. Capasso. Broadband high efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl. Acad. Sci. USA, 2016, 113: 10473-10478.

[19] E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, E. Hasman. Multifunctional interleaved geometric-phase dielectric metasurfaces. Light Sci. Appl., 2017, 6: e17027.

[20] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352: 1190-1194.

[21] M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, P. Thomas, Y. S. Kivshar. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater., 2015, 3: 813-820.

[22] D. Arslan, K. E. Chong, A. Miroshnichenko, D. Y. Choi, D. N. Neshev, T. Pertsch, Y. S. Kivshar, I. Staude. Angle-selective all-dielectric Huygens’ metasurfaces. J. Phys. D, 2017, 50: 434002.

[23] L. Zhang, J. Ding, H. Y. Zheng, S. S. An, H. T. Lin, B. W. Zheng, D. Y. Du, G. F. Yin, J. Michon, Y. F. Zhang. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nat. Commun., 2018, 9: 1481.

[24] A. J. Ollanik, J. A. Smith, M. J. Belue, M. D. Escarra. High efficiency all-dielectric Huygens metasurfaces from the ultraviolet to the infrared. ACS Photon., 2018, 5: 1351-1358.

[25] M. I. Shalaev, J. B. Sun, A. Tsukernik, A. Pandey, K. Nikolskly, N. M. Litchinister. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett., 2015, 15: 6261-6266.

[26] S. Liu, A. Vaskin, S. Campione, O. Wolf, M. B. Sinclair, J. L. Reno, G. A. Keeler, I. Staude, I. Brener. Huygens’ metasurfaces enabled by magnetic dipole resonance tuning in split dielectric nanoresonators. Nano Lett., 2017, 17: 4297-4303.

[27] R. Zhao, Z. Zhu, G. Dong, T. Lv, Y. Li, C. Guan, J. Shi, H. Zhang. High-efficiency Huygens’ metasurface for terahertz wave manipulation. Opt. Lett., 2019, 44: 3482-3485.

[28] M. Kerker, D. S. Wang, C. L. Giles. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am., 1983, 73: 765-767.

[29] I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Domingguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano, 2013, 7: 7824-7832.

[30] J. S. Eismann, M. Neugebauer, P. Banzer. Exciting a chiral dipole moment in an achiral nanostructure. Optica, 2018, 5: 954-959.

[31] W. Y. Zhao, H. Jiang, B. Y. Liu, J. Song, Y. Y. Jiang. High-efficiency beam manipulation combining geometric phase with anisotropic Huygens surface. Appl. Phys. Lett., 2016, 108: 181102.

[32] Y. Z. Chen, J. Mei. All-dielectric two-dimensional metasurfaces based on electric and magnetic dipolar Mie resonances. Europhys. Lett., 2018, 122: 54002.

[33] P. Grahn, A. Shevchenko, M. Kaivola. Electromagnetic multipole theory for optical nanomaterials. New J. Phys., 2012, 14: 093033.

[34] JacksonJ. D., Classical Electrodynamics, 3rd ed. (Wiley, 1999).

[35] E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, L. D. Marks. Plasmon length: a universal parameter to describe size effects in gold nanoparticles. J. Phys. Chem. Lett., 2012, 3: 1479-1483.

[36] A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, B. N. Chichkov. Optical response features of Si-nanoparticle arrays. Phys. Rev. B, 2010, 82: 45404.

[37] V. E. Babicheva, A. B. Evlyukhin. Resonant lattice Kerker effect in metasurfaces with electric and magnetic optical responses. Laser Photon. Rev., 2017, 11: 1700132.

[38] S. D. Swiecicki, J. E. Sipe. Surface-lattice resonances in two-dimensional arrays of spheres: multipolar interactions and a mode analysis. Phys. Rev. B, 2017, 95: 195406.

[39] C. Liu, T. Wu, Y. Liu, J. Li, Y. Wang, Z. Yu, H. Ye, L. Yu. Realization of perfect selective absorber based on multipole modes in all-dielectric moth-eye structure. Opt. Express, 2019, 27: 5703-5718.

[40] L. Rayleigh. Note on the remarkable case of diffraction spectra described by Prof. Wood. Philos. Mag., 1907, 14: 60-65.

Chang Liu, Lei Chen, Tiesheng Wu, Yumin Liu, Jing Li, Yu Wang, Zhongyuan Yu, Han Ye, Li Yu. All-dielectric three-element transmissive Huygens’ metasurface performing anomalous refraction[J]. Photonics Research, 2019, 7(12): 12001501.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!