激光与光电子学进展, 2018, 55 (12): 120008, 网络出版: 2019-08-01   

基于可见光通信的正交频分复用技术研究进展 下载: 1619次

Progress of Orthogonal Frequency Division Multiplexing Based on Visible Light Communication
作者单位
陆军装甲兵学院兵器与控制系, 北京 100072
引用该论文

宋小庆, 王慕煜, 邢松, 赵梓旭. 基于可见光通信的正交频分复用技术研究进展[J]. 激光与光电子学进展, 2018, 55(12): 120008.

Xiaoqing Song, Muyu Wang, Song Xing, Zixu Zhao. Progress of Orthogonal Frequency Division Multiplexing Based on Visible Light Communication[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120008.

参考文献

[1] 宋小庆, 赵梓旭, 陈克伟, 等. 可见光通信应用前景与发展挑战[J]. 激光与光电子学进展, 2015, 52(8): 080004.

    Song X Q, Zhao Z X, Chen K W, et al. Visible light communication: potential applications and challenges[J]. Laser & Optoelectronics Progress, 2015, 52(8): 080004.

[2] 宋小庆, 魏有财, 赵梓旭, 等. 高速可见光通信硬件预均衡技术研究进展[J]. 激光与光电子学进展, 2017, 54(8): 080003.

    Song X Q, Wei Y C, Zhao Z X, et al. Research progress on hardware pre-equalization technology for high-speed visible light communication[J]. Laser & Optoelectronics Progress, 2017, 54(8): 080003.

[3] 迟楠. LED可见光通信技术[M]. 北京: 清华大学出版社, 2013.

    ChiN. LED visible light communication technologies[M]. Beijing: Tsinghua University Press, 2013.

[4] 宋小庆, 贾胜杰, 赵梓旭, 等. 可见光通信中的定长双宽数字脉冲间隔调制[J]. 激光与光电子学进展, 2016, 53(11): 110601.

    Song X Q, Jia S J, Zhao Z X, et al. Fixed length dual duration digital pulse interval modulation for visible light communications[J]. Laser & Optoelectronics Progress, 2016, 53(11): 110601.

[5] Yang F, Gao J N, Liu S C. Novel visible light communication approach based on hybrid OOK and ACO-OFDM[J]. IEEE Photonics Technology Letters, 2016, 28(14): 1585-1588.

[6] OzakiT, KozawaY, UmedaY. Improved error performance of variable PPM for visible light communication[C]∥2014 International Symposium on Wireless Personal Multimedia Communications (WPMC), 2014: 259- 264.

[7] AssabirA, ElmhamdiJ, HammouchA, et al. Application of Li-Fi technology in the transmission of the sound at the base of the PWM[C]∥2016 International Conference on Electrical and Information Technologies (ICEIT), 2016: 260- 265.

[8] MaivanL. A low complexity of PAPR reduction scheme in the IM-DD optical OFDM system based on fast Hartley transform[C]∥ Asia Communications and Photonics Conference, 2015: AM2F. 3.

[9] Zhang T, Ghassemlooy Z, Ma C Y, et al. PAPR reduction scheme for ACO-OFDM based visible light communication systems[J]. Optics Communications, 2017, 383: 75-80.

[10] 余冰雁. 基于照明LED的室内高速可见光通信关键技术研究[D]. 北京: 清华大学, 2015.

    Yu BY. Research on key technologies of lighting LED based indoor high speed visible light communication[D]. Beijing: Tsinghua University, 2015.

[11] Chang R W. Synthesis of band-limited orthogonal signals for multichannel data transmission[J]. Bell System Technical Journal, 1966, 45(10): 1775-1796.

[12] Weinstein S, Ebert P. Data transmission by frequency-division multiplexing using the discrete Fourier transform[J]. IEEE Transactions on Communication Technology, 1971, 19(5): 628-634.

[13] PeledA, RuizA. Frequency domain data transmission using reduced computational complexity algorithms[C]∥ICASSP '80. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1980: 964- 967.

[14] Dissanayake S D, Armstrong J. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems[J]. Journal of Lightwave Technology, 2013, 31(7): 1063-1072.

[15] DjengomemgotoG, NarmanliogluO, Kizilirmak RC, et al. eU-OFDM based multiple access for visible light communication networks[C]∥2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT), 2016: 1- 4.

[16] MulindeR, Nguyen KD, Cowley WG. BER analysis of optical eU-OFDM transmission over AWGN[C]∥2015 9th International Conference on Signal Processing and Communication Systems (ICSPCS), 2015: 1- 6.

[17] Wang XD, BaoT, WuN, et al. A novel Hartley-based U-OFDM dimming control approach[C]∥2017 36th Chinese Control Conference ( CCC), 2017.

[18] Narmanlıo lu Ö, UysalM. DCT-OFDM based visible light communications[C]∥2016 24th Signal Processing and Communication Application Conference (SIU), 2016: 521- 524.

[19] WuN, Bar-NessY. Lower bounds on the channel capacity of ASCO-OFDM and ADO-OFDM[C]∥2015 49th Annual Conference on Information Sciences and Systems (CISS), 2015: 1- 5.

[20] KottkeC, HiltJ, HabelK, et al. 1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary[C]∥European Conference and Exhibition on Optical Communication, 2012.

[21] 徐宪莹. 基于OFDM的室内光无线传输技术研究[D]. 大连: 大连海事大学, 2014.

    Xu XY. Research on OFDM based indoor optical wireless transmission technology[D]. Dalian: Dalian Maritime University, 2014.

[22] FigueiredoM, RibeiroC, Alves LN. Live demonstration: 150 Mbps DCO-OFDM VLC[C]∥2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016: 457- 457.

[23] ChiN, Shi JY, Zhou YJ, et al. High speed LED based visible light communication for 5G wireless backhaul[C]∥2016 IEEE Photonics Society Summer Topical Meeting Series (SUM), 2016: 4- 5.

[24] Hussein AF, ElgalaH, FahsB, et al. Experimental investigation of DCO-OFDM adaptive loading using Si PN-based receiver[C]∥2017 26th Wireless and Optical Communication Conference (WOCC), 2017: 1- 5.

[25] Islim M S, Ferreira R X, He X Y, et al. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED[J]. Photonics Research, 2017, 5(2): A35-A43.

[26] ZhuX, Wang FM, ShiM, et al. 10.72 Gb/s visible light communication system based on single packaged RGBYC LED utilizing QAM-DMT modulation with hardware pre-equalization[C]∥Optical Fiber Communication Conference, 2018.

[27] ShiehW, DjordjevicI. OFDM for optical communications[M]. Amsterdam: Elsevier, 2010: 31- 52.

[28] Carruthers J B, Kahn J M. Multiple-subcarrier modulation for nondirected wireless infrared communication[J]. IEEE Journal on Selected Areas in Communications, 1996, 14(3): 538-546.

[29] Armstrong J, Lowery A J. Power efficient optical OFDM[J]. Electronics Letters, 2006, 42(6): 370-372.

[30] FernandoN, HongY, ViterboE. Flip-OFDM for optical wireless communications[C]∥2011 IEEE Information Theory Workshop, 2011: 5- 9.

[31] 郑伊翎. 基于Flip-OFDM的光无线通信系统优化设计[D]. 南京: 东南大学, 2017.

    Zhen YL. Optimized design of optical wireless communication system based on Flip-OFDM[D]. Nanjing: Southeast University, 2017.

[32] TsonevD, SinanovicS, HaasH. Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless[C]∥2012 IEEE 75th Vehicular Technology Conference (VTC Spring), 2012: 1- 5.

[33] 冯海燕. 室内可见光通信系统O-OFDM技术研究[D]. 大连: 大连海事大学, 2017.

    Feng HY. Research on O-OFDM technology for indoor visible optical communication systems[D]. Dalian: Dalian Maritime University, 2017.

[34] IslamR, ChoudhuryP, Islam MA. Analysis of DCO-OFDM and flip-OFDM for IM/DD optical-wireless system[C]∥8th International Conference on Electrical and Computer Engineering, 2014: 32- 35.

[35] AlyB. Performance analysis of adaptive channel estimation for U-OFDM indoor visible light communication[C]∥2016 33rd National Radio Science Conference (NRSC), 2016: 217- 222.

[36] Mesleh R, Elgala H, Haas H. On the performance of different OFDM based optical wireless communication systems[J]. Journal of Optical Communications and Networking, 2011, 3(8): 620-628.

[37] 曾福来. 可见光通信OFDM调制技术研究[D]. 郑州: 解放军信息工程大学, 2014.

    Zeng FL. Research on OFDM modulation for visible light communication[D]. Zhengzhou: Information Engineering University, 2014.

[38] 唐洋. OFDM可见光通信系统峰均比抑制方法研究[D]. 南京: 东南大学, 2015.

    TangY. Research on peak-to-average ratio suppression method in OFDM visible light communication system[D]. Nanjing: Southeast University, 2015.

宋小庆, 王慕煜, 邢松, 赵梓旭. 基于可见光通信的正交频分复用技术研究进展[J]. 激光与光电子学进展, 2018, 55(12): 120008. Xiaoqing Song, Muyu Wang, Song Xing, Zixu Zhao. Progress of Orthogonal Frequency Division Multiplexing Based on Visible Light Communication[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120008.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!