Advanced Photonics, 2020, 2 (3): 034001, Published Online: Jun. 22, 2020   

Advances in soliton microcomb generation Download: 1842次

Author Affiliations
1 Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics, State Key Laboratory of Transient Optics and Photonics, Xi’an, China
2 University of Chinese Academy of Sciences, Beijing, China
Copy Citation Text

Weiqiang Wang, Leiran Wang, Wenfu Zhang. Advances in soliton microcomb generation[J]. Advanced Photonics, 2020, 2(3): 034001.

References

[1] K. J. Vahala. Optical microcavities. Nature, 2003, 424: 839-846.

[2] T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett., 2004, 93: 083904.

[3] A. A. Savchenkov, et al.. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett., 2004, 93: 243905.

[4] M.-G. Suh, K. Vahala. Gigahertz-repetition-rate soliton microcombs. Optica, 2018, 5: 65-66.

[5] W. Q. Wang, et al.. Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing. Sci. Rep., 2016, 6: 28501.

[6] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 2011, 332(6029): 555-559.

[7] D. K. Armani, et al.. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421: 925-928.

[8] P. Del’Haye, et al.. Optical frequency comb generation from a monolithic microresonator. Nature, 2007, 450: 1214-1217.

[9] Y. Okawachi, et al.. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett., 2011, 36(17): 3398-3400.

[10] T. Herr, et al.. Temporal solitons in optical microresonators. Nat. Photonics, 2014, 8: 145-152.

[11] D. C. Cole, et al.. Kerr-microresonator solitons from a chirped background. Optica, 2018, 5: 1304-1310.

[12] V. Brasch, et al.. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, 2016, 351(6271): 357-360.

[13] X. Yi, et al.. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2015, 2: 1078-1085.

[14] C. Joshi, et al.. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett., 2016, 41(11): 2565-2568.

[15] Z. Lu, et al.. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator. AIP Adv., 2019, 9: 025314.

[16] H. Zhou, et al.. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 2019, 8: 50.

[17] Q.-F. Yang, et al.. Stokes solitons in optical microcavities. Nat. Phys., 2017, 13: 53-57.

[18] Q.-F. Yang, et al.. Counter-propagating solitons in microresonators. Nat. Photonics, 2017, 11: 560-564.

[19] W. Q. Wang, et al.. Robust soliton crystals in a thermally controlled microresonator. Opt. Lett., 2018, 43(9): 2002-2005.

[20] C. Bao, et al.. Observation of Fermi–Pasta–Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett., 2016, 117: 163901.

[21] H. Bao, et al.. Laser cavity-soliton microcombs. Nat. Photonics, 2019, 13: 384-389.

[22] W.Wenget al., “Heteronuclear soliton molecules in optical microresonators,” arXiv: 1901-04026v1.

[23] X. Xue, et al.. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics, 2015, 9: 594-600.

[24] T. Herr, et al.. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett., 2014, 113: 123901.

[25] M. Karpov, et al.. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys. Rev. Lett., 2016, 116: 103902.

[26] X. Yi, et al.. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun., 2017, 8: 14869.

[27] Z. Lu, et al.. Raman self-frequency-shift of soliton crystal in a high index doped silica micro-ring resonator. Opt. Mater. Express, 2018, 8: 2662-2669.

[28] R.Niuet al., “Repetition rate tuning of soliton in microrod resonators,” arXiv:1809.06490 (2018).

[29] S. Y. Zhang, et al.. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica, 2019, 6: 206-212.

[30] Z. Gong, et al.. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Opt. Lett., 2018, 43(18): 4366-4369.

[31] Y. He, et al.. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 2019, 6: 1138-1144.

[32] M. Yu, et al.. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica, 2016, 3: 854-860.

[33] S. H. Lee, et al.. Towards visible soliton microcomb generation. Nat. Commun., 2017, 8: 1295.

[34] M. H. P. Pfeiffer, et al.. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica, 2017, 4: 684-691.

[35] M. Karpov, et al.. Photonic chip-based soliton frequency combs covering the biological imaging window. Nat. Commun., 2018, 9: 1146.

[36] I. S. Grudinin, et al.. High-contrast Kerr frequency combs. Optica, 2017, 4: 434-437.

[37] P.-H. Wang, et al.. Intracavity characterization of micro-comb generation in the single-soliton regime. Opt. Express, 2016, 24(10): 10890-10897.

[38] M. Suh, et al.. Microresonator soliton dual-comb spectroscopy. Science, 2016, 354(6312): 600-603.

[39] P. Marin-Palomo, et al.. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 2017, 546: 274-279.

[40] D. T. Spencer, et al.. An optical-frequency synthesizer using integrated photonics. Nature, 2018, 557: 81-85.

[41] P. Trocha, et al.. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 2018, 359(6378): 887-891.

[42] M.-G. Suh, et al.. Searching for exoplanets using a microresonator astrocomb. Nat. Photonics, 2019, 13: 25-30.

[43] A. Pasquazi, et al.. Micro-combs: a novel generation of optical sources. Phys. Rep., 2018, 729: 1-81.

[44] L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 2019, 13: 158-169.

[45] N. G. Pavlov, et al.. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nat. Photonics, 2018, 12: 694-698.

[46] D. C. Cole, et al.. Soliton crystals in Kerr resonaotors. Nat. Photonics, 2017, 11: 671-676.

[47] J. R. Stone, et al.. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys. Rev. Lett., 2018, 121: 063902.

[48] Q. Li, et al.. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica, 2017, 4: 193-203.

[49] C. Bao, et al.. Direct soliton generation in microresonators. Opt. Lett., 2017, 42(13): 2519-2522.

[50] Y. Geng, et al.. Terabit optical OFDM superchannel transmission via coherent carriers of a hybrid chip-scale soliton frequency comb. Opt. Lett., 2018, 43(10): 2406-2409.

[51] M. Yu, et al.. Breather soliton dynamics in microresonators. Nat. Commun., 2017, 8: 14569.

[52] B. Stern, et al.. Battery-operated integrated frequency comb generator. Nature, 2018, 562: 401-405.

[53] J. Liu, et al.. Ultralow-power chip-based SMCs for photonic integration. Optica, 2018, 5: 1347-1353.

[54] B. Yao, et al.. Gate-tunable frequency combs in graphene-nitride microresonators. Nature, 2018, 558: 410-414.

[55] Z. Gong, et al.. Soliton microcomb generation at 2  μm in z-cut lithium niobate microring resonators. Opt. Lett., 2019, 44(12): 3182-3185.

[56] Y. K. Chembo, N. Yu. Modal expansion approach to optical frequency-comb generation with monolithic whispering gallery-mode resonators. Phys. Rev. A, 2010, 82: 033801.

[57] Y. K. Chembo, N. Yu. On the generation of octave-spanning optical frequency combs using monolithic whispering-gallery-mode microresonators. Opt. Lett., 2010, 35(16): 2696-2698.

[58] A. B. Matsko, et al.. Mode-locked Kerr frequency combs. Opt. Lett., 2011, 36(15): 2845-2847.

[59] Y. K. Chembo, C. R. Menyuk. Spatiotemporal Lugiato–Lefever formalism for Kerr-comb generation in whispering-gallerymode resonators. Phys. Rev. A, 2013, 87: 053852.

[60] S. Coen, et al.. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett., 2013, 38(1): 37-39.

[61] T. Carmon, L. Yang, K. J. Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 2004, 12(20): 4742-4750.

[62] V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko. Quality factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A, 1989, 137: 393-397.

[63] V. Brasch, et al.. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express, 2016, 24(25): 29312-29320.

[64] X. Yi, et al.. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett., 2016, 41(9): 2037-2040.

[65] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 2018, 359(6378): 884-887.

[66] Y.Genget al., “Kerr frequency comb dynamics circumventing cavity thermal behavior,” in Nonlinear Opt., p. NM1A.4 (2017).

[67] S.Zhang, J.Silver and P.Del’Haye, “Spectral extension and synchronisation of microcombs in a single microresonator,” arXiv: 2002.06168v1 (2020).

[68] X. Guo, et al.. Efficient generation of a near-visible frequency comb via Cherenkov-like radiation from a Kerr microcomb. Phys. Rev. Appl., 2018, 10: 014012.

[69] H. Guo, et al.. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 2017, 13: 94-102.

[70] V. V. Vassiliev, et al.. Narrow-line-width diode laser with a high-Q microsphere resonator. Opt. Commun., 1998, 158: 305-312.

[71] N. M. Kondratiev, et al.. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express, 2017, 25(23): 28167-28178.

[72] A. S. Raja, et al.. Electrically pumped photonic integrated soliton microcomb. Nat. Commun., 2019, 10: 680.

[73] M.-G. Suh, et al.. Directly pumped 10 GHz microcomb modules from low-power diode lasers. Opt. Lett., 2019, 44(7): 1841-1843.

[74] B.Shenet al., “Integrated turnkey soliton microcombs operated at CMOS frequencies,” arXiv:1911.02636v1 (2019).

[75] A. S.Voloshinet al., “Dynamics of soliton self-injection locking in a photonic chip-based microresonator,” arXiv:1912.11303v2 (2020).

[76] E. Obrzud, S. Lecomte, T. Herr. Temporal solitons in microresonators driven by optical pulses. Nat. Photonics, 2017, 11: 600-607.

[77] E. Obrzud, et al.. A microphotonic astrocomb. Nat. Photonics, 2019, 13: 31-35.

[78] F. Leo, et al.. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics, 2010, 4: 471-476.

[79] M. Pang, et al.. All-optical bit storage in a fibre laser by optomechanically bound states of solitons. Nat. Photonics, 2016, 10: 454-458.

[80] L. Stern, et al.. Direct Kerr frequency comb atomic spectroscopy and stabilization. Sci. Adv., 2020, 6: eaax6230.

[81] B. L. Zhao, et al.. Repetition-rate multiplicable soliton microcomb generation and stabilization via phase-modulated pumping scheme. Appl. Phys. Express, 2020, 13: 032009.

[82] M. Karpov, et al.. Dynamics of soliton crystals in optical microresonators. Nat. Phys., 2019, 15: 1071-1077.

[83] Y.Heet al., “Perfect soliton crystals on demand,” arXiv: 1910.00114v1 (2019).

[84] K. Y. Yang, et al.. Broadband dispersion-engineered microresonator on-a-chip. Nat. Photonics, 2016, 10: 316-320.

[85] H. Guo, et al.. Intermode breather solitons in optical microresonators. Phys. Rev. X, 2017, 7: 041055.

[86] C. J. Bao, et al.. Effect of a breather soliton in Kerr frequency combs on optical communication systems. Opt. Lett., 2016, 41(8): 1764.

[87] A. B. Matsko, A. A. Savchenkov, L. Maleki. On excitation of breather solitons in an optical microresonator. Opt. Lett., 2012, 37(23): 4856-4858.

[88] E. Lucas, et al.. Breathing dissipative solitons in optical microresonators. Nat. Commun., 2017, 8: 736.

[89] B. Kibler, et al.. The Peregrine soliton in nonlinear fibre optics. Nat. Phys., 2010, 6: 790-795.

[90] M. Peccianti, et al.. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun., 2012, 3: 765.

[91] W. Wang, et al.. Repetition rate multiplication pulsed laser source based on a microring resonator. ACS Photonics., 2017, 4: 1677-1683.

[92] P. P. Rivas, et al.. Origin and stability of dark pulse Kerr combs in normal dispersion resonators. Opt. Lett., 2016, 41(11): 2402-2405.

[93] P. P. Rivas, et al.. Dark solitons in the Lugiato–Lefever equation with normal dispersion. Phys. Rev. A, 2016, 93: 063839.

[94] L. R. Wang. Coexistence and evolution of bright pulses and dark solitons in a fiber laser. Opt. Commun., 2013, 297: 129-132.

[95] P. P. Rivas, D. Gomila, L. Gelens. Coexistence of stable dark- and bright-soliton Kerr combs in normal-dispersion resonators. Phys. Rev. A, 2017, 95: 053863.

[96] X. H. Hu, et al.. Spatiotemporal evolution of continuous-wave field and dark soliton formation in a microcavity with normal dispersion. Chin. Phys. B, 2017, 26: 074216.

[97] X. X. Xue, et al.. Normal-dispersion microcombs enabled by controllable mode interactions. Laser and Photonic Rev., 2015, 9: L23-L28.

[98] L. R. Wang, et al.. Observations of four types of pulses in a fiber laser with large net-normal dispersion. Opt. Express, 2011, 19(8): 7616-7624.

[99] V. E. Lobanov, G. Lihachev, M. L. Gorodetsky. Generation of platicons and frequency combs in optical microresonators with normal GVD by modulated pump. Europhys. Lett., 2015, 112: 54008.

[100] A. A. Savchenkov, et al.. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett., 2008, 101: 093902.

[101] W. Liang, et al.. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD. Opt. Lett., 2014, 39(10): 2920-2923.

[102] S. W. Huang, et al.. Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. Phys. Rev. Lett., 2015, 114: 053901.

[103] Y. Liu, et al.. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica, 2014, 2: 137-144.

[104] X. X. Xue, et al.. Second-harmonic assisted four-wave mixing in chip-based microresonator frequency comb generation. Light Sci. Appl., 2017, 6: e16253.

[105] Z.-X. Ding, et al.. All-fiber ultrafast laser generating gigahertz-rate pulses based on a hybrid plasmonic microfiber resonator. Adv. Photon., 2020, 2(2): 026002.

[106] H. Zhang, et al.. Coherent energy exchange between components of a vector soliton in fiber lasers. Opt. Express, 2008, 16(17): 12618-12623.

[107] Y. Xiang, et al.. Scalar and vector solitons in a bidirectional mode-locked fibre laser. J. Lightwave Technol., 2019, 37: 5108-5114.

[108] D. Mao, et al.. Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser. Laser Phys. Lett., 2011, 8(2): 134-138.

[109] N.Akhmediev and A.Ankiewicz, Dissipative Solitons, Lecture Notes in Physics, Vol. 661, Springer-Verlag, Berlin, Heidelberg (2005).

[110] G. Fibich, B. Ilan. Optical light bullets in a pure Kerr medium. Opt. Lett., 2004, 29(8): 887-889.

[111] M. Tlidi, et al.. Drifting cavity solitons and dissipative rogue waves induced by time-delayed feedback in Kerr optical frequency comb and in all fiber cavities. Chaos, 2017, 27: 114312.

[112] Y. F. Song, et al.. Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives. Adv. Photon., 2020, 2(2): 024001.

[113] L. R. Wang, X. M. Liu, Y. K. Gong. Giant-chirp oscillator for ultra-large net-normal dispersion fiber lasers. Laser Phys. Lett., 2010, 7(1): 63-67.

[114] L. R. Wang, et al.. Dissipative soliton generation/compression in a compact all-fibre laser system. Electron. Lett., 2011, 47(6): 392-393.

[115] J. Pfeifle, et al.. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photonics, 2014, 8: 375-380.

[116] A. Fülöp, et al.. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun., 2018, 9: 1598.

[117] M.Mazuret al., “Enabling high spectral efficiency coherent super channel transmission with SMCs,” arXiv: 1812.11046 (2018).

[118] Q. Yang, et al.. Vernier spectrometer using counter-propagating SMCs. Science, 2019, 363(6430): 965-968.

[119] A. Dutt, et al.. On-chip dual-comb source for spectroscopy. Sci. Adv., 2018, 4: e1701858.

[120] M. Yu, et al.. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun., 2018, 9: 1869.

[121] E. Lucas, et al.. Spatial multiplexing of soliton microcombs. Nat. Photonics, 2018, 12: 699-705.

[122] J.Riemensbergeret al., “Massively parallel coherent laser ranging using soliton microcombs,” arXiv:1912.11374v1 (2019).

[123] J.Wanget al., “Long distance measurement using single soliton microcomb,” arXiv:2002.10565 (2020).

[124] S. B. Papp, et al.. Microresonator frequency comb optical clock. Optica, 2014, 2: 10-14.

[125] P. Del’Haye, et al.. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nat. Photonics, 2016, 10: 516-520.

[126] S.-W. Huang, et al.. A broadband chip-scale optical frequency synthesizer at 2.7×1016 relative uncertainty. Sci. Adv., 2016, 2: e1501489.

[127] Z. L. Newman, et al.. Architecture for the photonic integration of an optical atomic clock. Optica, 2019, 6: 680-685.

[128] F. Alishahi, et al.. Reconfigurable optical generation of nine Nyquist WDM channels with sinc-shaped temporal pulse trains using a single microresonator-based Kerr frequency comb. Opt. Lett., 2019, 44(7): 1852-1855.

[129] W. Liang, et al.. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 2015, 6: 7957.

[130] W. Weng, et al.. Spectral purification of microwave signals with disciplined dissipative Kerr solitons. Phys. Rev. Lett., 2019, 122: 013902.

[131] X. Xu, et al.. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt. Express, 2018, 26(3): 2569-2583.

[132] X.Xuet al., “An optical micro-comb with a 50-GHz free spectral range for photonic microwave true time delays,” arXiv:1711.03927 (2017).

[133] X. Y. Xu, et al.. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source. APL Photonics, 2017, 2(9): 096104.

[134] X. X. Xue, A. M. Weiner. Microwave photonics connected with microresonator frequency combs. Front. Optoelectron., 2016, 9: 238-248.

[135] X. X. Xue, et al.. Microresonator frequency combs for integrated microwave photonics. IEEE Photonics Technol. Lett., 2018, 30: 1814-1817.

[136] M. Kues, et al.. Quantum optical microcombs. Nat. Photonics, 2019, 13: 170-179.

[137] C. Reimer, et al.. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 2016, 351(6278): 1176-1180.

[138] M. Kues, et al.. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 2017, 546: 622-626.

[139] F.-X. Wang, et al.. Quantum key distribution with on-chip dissipative Kerr soliton. Laser Photon. Rev., 2020, 14: 1900190.

[140] L. Caspani, et al.. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs. Nanophotonics, 2016, 5(2): 351-362.

[141] C. L. Xiong, B. Bell, B. J. Eggleton. CMOS-compatible photonic devices for single-photon generation. Nanophotonics, 2016, 5(3): 427-439.

[142] C. Reimer, et al.. CMOS-compatible, multiplexed source of heralded photon pairs: towards integrated quantum combs. Opt. Express, 2014, 22(6): 6535-6546.

[143] W. C. Jiang, et al.. Silicon-chip source of bright photon pairs. Opt. Express, 2015, 23(16): 20884-20904.

[144] R. Wakabayashi, et al.. Time-bin entangled photon pair generation from Si micro-ring resonator. Opt. Express, 2015, 23(2): 1103-1113.

[145] D. Grassani, et al.. Micrometer-scale integrated silicon source of time-energy entangled photons. Optica, 2015, 2: 88-94.

[146] P. Imany, et al.. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. Opt. Express, 2018, 26(2): 1825-1840.

[147] T. J. Kippenberg, et al.. Dissipative Kerr solitons in optical microresonators. Science, 2018, 361(6402): eaan8083.

[148] D. Chen, et al.. On-chip ultra-high-Q silicon oxynitride optical resonators. ACS Photonics, 2017, 4: 2376-2381.

[149] D. Chen, et al.. Normal dispersion silicon oxynitride microresonator Kerr frequency combs. Appl. Phys. Lett., 2019, 115: 051105.

[150] A. Kovach, et al.. Emerging material systems for integrated optical Kerr frequency combs. Adv. Opt. Photonics, 2020, 12: 135-222.

[151] B. Y. Kim, et al.. Turn-key, high-efficiency Kerr comb source. Opt. Lett., 2019, 44(18): 4475-4478.

[152] X. X. Xue, X. P. Zheng, B. K. Zhou. Super-efficient temporal solitons in mutually coupled optical cavities. Nat. Photonics, 2019, 13: 616-622.

[153] L. R. Wang, et al.. Frequency comb generation in the green using silicon nitride microresonators. Laser Photonics Rev., 2016, 10: 631-638.

[154] M. Zhang, et al.. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 2019, 568: 373-377.

[155] J. G. Zhu, et al.. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photon., 2010, 4: 46-49.

[156] B.-Q. Shen, et al.. Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity. Phys. Rev. Appl., 2016, 5: 024011.

[157] D. Xu, et al.. Synchronization and temporal nonreciprocity of optical microresonators via spontaneous symmetry breaking. Adv. Photon., 2019, 2(4): 046002.

[158] J. Liu, et al.. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon., 2020.

Weiqiang Wang, Leiran Wang, Wenfu Zhang. Advances in soliton microcomb generation[J]. Advanced Photonics, 2020, 2(3): 034001.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!