光电工程, 2019, 46 (10): 180575, 网络出版: 2019-11-19   

点测量激光吸收光谱技术理论分析

Theoretical research of point-measurement laser absorption spectroscopy
作者单位
中国空气动力研究与发展中心超高速空气动力研究所,四川 绵阳 621000
引用该论文

陈卫, 伍越, 罗杰, 刘进博, 王磊, 朱新新, 朱涛. 点测量激光吸收光谱技术理论分析[J]. 光电工程, 2019, 46(10): 180575.

Chen Wei, Wu Yue, Luo Jie, Liu Jinbo, Wang Lei, Zhu Xinxin, Zhu Tao. Theoretical research of point-measurement laser absorption spectroscopy[J]. Opto-Electronic Engineering, 2019, 46(10): 180575.

参考文献

[1] 王书涛, 王昌冰, 潘钊, 等. 光学技术在气体浓度检测中的应用[J]. 光电工程, 2017, 44(9): 862–871.

    Wang S T, Wang C B, Pan Z, et al. Applications of optical technology in gas concentration detection[J]. Opto-Electronic Engineering, 2017, 44(9): 862–871.

[2] 李龙, 杨燕罡, 陈文亮, 等. 基于HWG 气体池的TDLAS 氨气测量中影响条件的修正[J]. 光电工程, 2015, 45(12): 35–40.

    Li L, Yang Y G, Chen W L, et al. Correction of influence conditions in TDLAS ammonia measuring based on hollow waveguide cell[J]. Opto-Electronic Engineering, 2015, 45(12):35–40.

[3] 孙鹏帅, 张志荣, 夏滑, 等. 基于波长调制技术的温度实时测量方法研究[J]. 光学学报, 2015, 35(2): 0230001.

    Sun P S, Zhang Z R, Xia H, et al. Study on real-time temperature measurement based on wavelength modulation technology[J]. Acta Optica Sinica, 2015, 35(2): 0230001.

[4] 殷可为, 胥頔, 张龙, 等. TDLAS 技术用于燃烧场气体温度和浓度重建研究[J]. 光电工程, 2016, 43(12): 20–27.

    Yin K W, Xu D, Zhang L, et al. 2D reconstruction for gas temperature and concentration based on TDLAS[J]. Opto-Electronic Engineering, 2016, 43(12): 20–27.

[5] 贾良权, 刘文清, 阚瑞峰, 等. 采用TDLAS 的超音速气流中氧气质量流量检测法[J]. 光子学报, 2015, 44(7): 0730001.

    Jia L Q, Liu W Q, Kan R F, et al. Oxygen mass flow detection method in supersonic flow based on TDLAS[J]. Acta Photonica Sinica, 2015, 44(7): 0730001.

[6] 洪光烈, 章桦萍, 刘豪, 等. 国外差分吸收激光雷达探测大气CO2 研究综述[J]. 光电工程, 2018, 45(1): 170452.

    Hong G L, Zhang H P, Liu H, et al. Review of measurement for atmospheric CO2 differential absorption lidar[J]. Opto-Electronic Engineering, 2018, 45(1): 170452.

[7] 许超, 方朝晖, 董美丽, 等. 基于吸收光谱技术的皮肤胆固醇无创检测系统设计[J]. 光电工程, 2018, 45(4): 170587.

    Xu C, Fang Z H, Dong M L, et al. Design of non-invasive skin cholesterol detection system based on absorption spectroscopy[J]. Opto-Electronic Engineering, 2018, 45(4): 170587.

[8] Liu C, Xu L J, Cao Z, et al. One-dimensional tomography of axisymmetric temperature distribution with limited TDLAS data by using three-point Abel deconvolution[C]//Proceedings of 2014 IEEE International Conference on Imaging Systems and Techniques, 2014: 432–435.

[9] Xu L J, Liu C, Jing W Y, et al. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction[J]. Review of Scientific Instruments, 2016, 87(1):013101.

[10] 李金义, 杜振辉, 周涛, 等. 温度调谐多谱线方法测量燃烧场的非均匀温度分布[J]. 光学学报, 2013, 33(S2): s212009.

    Li J Y, Du Z H, Zhou T, et al. Non-uniform temperature distribution measurement of combustion field using temperature tuning multi-line thermometry[J]. Acta Optica Sinica, 2013, 33(S2): s212009.

[11] Nadir Z, Brown M S, Comer M L, et al. Gaussian mixture prior models for imaging of flow cross sections from sparse hyperspectral measurements[C]//Proceedings of 2015 IEEE Global Conference on Signal and Information Processing, 2015:527–531.

[12] Barone D L. Investigation of TDLAS measurements in a scramjet engine[D]. Cincinnati: University of Cincinnati, 2010.

[13] Hannemann K. Hypersonic research in the high-enthalpy shock tunnel G ttingen[C]//Proceedings of the 30th International Symposium on Shock Waves 2, 2017: 1385–1390.

[14] 欧东斌, 陈连忠, 董永晖, 等. 电弧风洞中基于TDLAS 的气体温度和氧原子浓度测试[J]. 实验流体力学, 2015, 29(3): 62–67.

    Ou D B, Chen L Z, Dong Y H, et al. Measurements of gas temperature and atomic oxygen density in the arc-heated wind tunnel based on TDLAS[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 62–67.

[15] Kianvashrad N, Knight D. Effect of vibrational temperature boundary condition of isothermal wall on hypersonic shock wave laminar boundary layer interaction of a hollow cylinder flare[C]//Proceedings of the 7th European Conference for Aeronautics and Aerospace Sciences, 2017.

[16] Matsudo T, Takahara Y, Hori H, et al. Pseudomomentum transfer from evanescent waves to atoms measured by saturated absorption spectroscopy[J]. Optics Communications,1998, 145(1–6): 64–68.

[17] 荆彦锋, 闫树斌, 秦丽, 等. 薄铷汽室饱和吸收光谱的研究[J].激光与红外, 2010, 40(7): 697–699.

    Jing Y F, Yan S B, Qin L, et al. Research of thin Rb vapor cell’s saturated absorption spectroscopy[J]. Laser & Infrared, 2010,40(7): 697–699.

[18] Kumar P, Saini V K, Purbia G S, et al. Hyperfine structure studies of neutral europium transitions at 601.815 and 580.027 nm by saturation absorption spectroscopy[J]. Applied Optics,2017, 56(6): 1579–1584.

[19] Zizak G, Cignoli F, Benecchi S. Spatially resolved saturated absorption measurements of OH in methane-air flames[J]. Applied Optics, 1987, 26(19): 4293–4297.

[20] Goldsmith J E M. Spatially resolved saturated absorption spectroscopy in flames[J]. Optics Letters, 1981, 6(11):525–527.

[21] Walters P E, Long G L, Winefordner J D. Spatially resolved concentration studies of ground state atoms and ions in an ICP:saturated absorption spectroscopic method[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1984, 39(1): 69–76.

[22] Kychakoff G, Howe R D, Hanson R K. Spatially resolved combustion measurements using cross-beam saturated absorption spectroscopy[J]. Applied Optics, 1984, 23(9): 1303–1305.

[23] Nomura S, Kaneko T, Komurasaki K. Development of highly sensitive and spatially resolved laser absorption spectroscopy for plasma wind tunnel measurement[C]//Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2012.

[24] Nomura S, Ito G, Fujita K, et al. Translational temperature measurements in a shock layer by point-measurement laser absorption spectroscopy[C]//Proceedings of the 52nd Aerospace Sciences Meeting, 2015.

[25] 沃尔夫冈·戴姆特瑞德. 激光光谱学. 第2 卷, 实验技术[M]. 姬扬,译. 北京: 科学出版社, 2012: 121–124.

    Demtroder W. Laser Spectroscopy (Vol. 2): Experimental Techniques[M]. Ji Y, trans. Beijing: Science Press, 2012:121–124.

[26] 王健, 黄伟, 顾海涛, 等. 可调谐二极管激光吸收光谱法测量气体温度[J]. 光学学报, 2007, 27(9): 1639–1642.

    Wang J, Huang W, Gu H T, et al. Gas temperature measurement with tunable diode laser absorption spectroscopy[J]. Acta Optica Sinica, 2007, 27(9): 1639–1642.

[27] Kim S. Development of tunable diode laser absorption sensors for a large-scale arc-heated-plasma wind tunnel[D]. Stanford:Stanford University, 2004.

[28] Parks T, McClellan J. Chebyshev approximation for nonrecursive digital filters with linear phase[J]. IEEE Transactions on Circuit Theory, 1972, 19(2): 189–194.

陈卫, 伍越, 罗杰, 刘进博, 王磊, 朱新新, 朱涛. 点测量激光吸收光谱技术理论分析[J]. 光电工程, 2019, 46(10): 180575. Chen Wei, Wu Yue, Luo Jie, Liu Jinbo, Wang Lei, Zhu Xinxin, Zhu Tao. Theoretical research of point-measurement laser absorption spectroscopy[J]. Opto-Electronic Engineering, 2019, 46(10): 180575.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!