光学学报, 2020, 40 (16): 1614001, 网络出版: 2020-08-07   

基于空芯光纤的光泵浦4 μm连续波HBr气体激光器 下载: 1418次封底文章

Optically Pumped 4 μm CW HBr Gas Laser Based on Hollow-Core Fiber
周智越 1,2,3李昊 1,2,3崔宇龙 1,2,3黄威 1,2,3王泽锋 1,2,3,*
作者单位
1 国防科技大学前沿交叉学科学院, 湖南 长沙 410073
2 脉冲功率激光技术国家重点实验室, 湖南 长沙 410073
3 高能激光技术湖南省重点实验室, 湖南 长沙 410073
引用该论文

周智越, 李昊, 崔宇龙, 黄威, 王泽锋. 基于空芯光纤的光泵浦4 μm连续波HBr气体激光器[J]. 光学学报, 2020, 40(16): 1614001.

Zhiyue Zhou, Hao Li, Yulong Cui, Wei Huang, Zefeng Wang. Optically Pumped 4 μm CW HBr Gas Laser Based on Hollow-Core Fiber[J]. Acta Optica Sinica, 2020, 40(16): 1614001.

参考文献

[1] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 2012, 6(7): 423-431.

[2] Zhou P, Wang X, Ma Y, et al. Review on recent progress on mid-infrared fiber lasers[J]. Laser Physics, 2012, 22(11): 1744-1751.

[3] Ehrenreich T, Leveille R, Majid I, et al. 1 kW, all-glass Tm:fiber laser[J]. Proceedings of SPIE, 2010, 7580: 758016.

[4] Jackson S D, Sabella A, Hemming A, et al. High-power 83 W holmium-doped silica fiber laser operating with high beam quality[J]. Optics Letters, 2007, 32(3): 241-243.

[5] Hemming A, Bennetts S, Simakov N, et al. Development of resonantly cladding-pumped holmium-doped fibre lasers[J]. Proceedings of SPIE, 2012, 8237: 82371J.

[6] El-Agmy R M, Al-Hosiny N. 2.31 μm laser under up-conversion pumping at 1.064 μm in Tm 3+: ZBLAN fibre lasers[J]. Electronics Letters, 2010, 46(13): 936-937.

[7] Aydin Y O, Fortin V, Vallee R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 2018, 43(18): 4542-4545.

[8] Fortin V, Bernier M, Bah S T, et al. 30 W fluoride glass all-fiber laser at 2.94 μm[J]. Optics Letters, 2015, 40(12): 2882-2885.

[9] Li J F, Hudson D D, Jackson S D. High-power diode-pumped fiber laser operating at 3 μm[J]. Optics Letters, 2011, 36(18): 3642-3644.

[10] Woodward R, Majewski M R, Bharathan G, et al. Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency[J]. Optics Letters, 2018, 43(7): 1471-1474.

[11] Fortin V, Jobin F, Larose M, et al. 10-W-level monolithic dysprosium-doped fiber laser at 324 μm[J]. Optics Letters, 2019, 44(3): 491-494.

[12] Maes F, Stihler C, Pleau L P, et al. 3.42 μm lasing in heavily-erbium-doped fluoride fibers[J]. Optics Express, 2019, 27(3): 2170-2183.

[13] Maes F, Fortin V, Bernier M, et al. 5.6 W monolithic fiber laser at 3.55 μm[J]. Optics Letters, 2017, 42(11): 2054-2057.

[14] Qin Z P, Xie G Q, Ma J G, et al. Mid-infrared Er:ZBLAN fiber laser reaching 3.68 μm wavelength[J]. Chinese Optics Letters, 2017, 15(11): 111402.

[15] Henderson-Sapir O, Jackson S D, Ottaway D J. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser[J]. Optics Letters, 2016, 41(7): 1676-1679.

[16] Maes F, Fortin V, Poulain S, et al. Room-temperature fiber laser at 3.92 μm[J]. Optica, 2018, 5(7): 761-764.

[17] Nampoothiri A V V, Jones A M, Fourcade-Dutin C, et al. Hollow-core optical fiber gas lasers (HOFGLAS): a review[J]. Optical Materials Express, 2012, 2(7): 948-961.

[18] Jones A M. Nampoothiri A V V, Ratanavis A, et al. Mid-infrared gas filled photonic crystal fiber laser based on population inversion[J]. Optics Express, 2011, 19(3): 2309-2316.

[19] Wang Z F, Belardi W, Yu F, et al. Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber[J]. Optics Express, 2014, 22(18): 21872-21878.

[20] Hassan M R A, Yu F, Wadsworth W J, et al. Cavity-based mid-IR fiber gas laser pumped by a diode laser[J]. Optica, 2016, 3(3): 218-221.

[21] 崔宇龙, 周智越, 黄威, 等. 基于反共振空芯光纤的4.3 μm二氧化碳激光器[J]. 光学学报, 2019, 39(12): 1214002.

    Cui Y L, Zhou Z Y, Huang W, et al. Anti-resonant hollow-core fibers based 4.3-μm carbon dioxide lasers[J]. Acta Optica Sinica, 2019, 39(12): 1214002.

[22] Zhou Z Y, Tang N, Li Z X, et al. High-power tunable mid-infrared fiber gas laser source by acetylene-filled hollow-core fibers[J]. Optics Express, 2018, 26(15): 19144-19153.

[23] Nampoothiri A V V, Debord B, Alharbi M, et al. CW hollow-core optically pumped I2 fiber gas laser[J]. Optics Letters, 2015, 40(4): 605-608.

[24] Aghbolagh F B A, Nampoothiri V, Debord B, et al. Mid IR hollow core fiber gas laser emitting at 4.6 μm[J]. Optics Letters, 2019, 44(2): 383-386.

[25] Cui Y L, Huang W, Wang Z F, et al. 4.3 μm fiber laser in CO2-filled hollow-core silica fibers[J]. Optica, 2019, 6(8): 951-954.

[26] Wang Z F, Yu F, Wadsworth W J, et al. Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering[J]. Laser Physics Letters, 2014, 11(10): 105807.

[27] Chen Y B, Wang Z F, Gu B, et al. Achieving a 1.5 μm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth[J]. Optics Letters, 2016, 41(21): 5118-5121.

[28] Li Z X, Huang W, Cui Y L, et al. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8 μm[J]. Optics Letters, 2018, 43(19): 4671-4674.

[29] 王泽锋, 于飞, William J Wadsworth, 等. 单程高增益1.9 μm光纤气体拉曼激光器[J]. 光学学报, 2014, 34(8): 0814004.

    Wang Z F, Yu F, William J, et al. Single-pass high-gain 1.9 μm optical fiber gas Raman laser[J]. Acta Optica Sinica, 2014, 34(8): 0814004.

[30] 陈育斌, 顾博, 王泽锋, 等. 1.5 μm光纤气体拉曼激光光源[J]. 光学学报, 2016, 36(5): 0506002.

    Chen Y B, Gu B, Wang Z F, et al. 1.5 μm fiber gas Raman laser source[J]. Acta Optica Sinica, 2016, 36(5): 0506002.

[31] 顾博, 陈育斌, 王泽锋. 基于空芯光纤中氢气级联SRS的红绿蓝色激光[J]. 光学学报, 2016, 36(8): 0806005.

    Gu B, Chen Y B, Wang Z F. Red, green and blue laser emissions from H2-filled hollow-core fiber by stimulated Raman scattering[J]. Acta Optica Sinica, 2016, 36(8): 0806005.

[32] 陈育斌, 王泽锋, 顾博, 等. 1.5 μm光纤乙烷气体拉曼激光放大器[J]. 光学学报, 2017, 37(5): 0514002.

    Chen Y B, Wang Z F, Gu B, et al. 1.5 μm fiber ethane gas Raman laser amplifier[J]. Acta Optica Sinica, 2017, 37(5): 0514002.

[33] Miller H C, Radzykewycz D T, Hager G. An optically pumped mid-infrared HBr laser[J]. IEEE Journal of Quantum Electronics, 1994, 30(10): 2395-2400.

[34] Kletecka C S, Rudolph W G, Nicholson J W, et al. Cascade lasing of molecular HBr in the four-micron region pumped by a Nd∶YAG laser[J]. Proceedings of SPIE, 2002, 4760: 594-602.

[35] Botha L R, Bollig C. Esser M J D, et al. Ho∶YLF pumped HBr laser[J]. Optics Express, 2009, 17(22): 20615-20622.

[36] Koen W, Jacobs C, Bollig C, et al. Optically pumped tunable HBr laser in the mid-infrared region[J]. Optics Letters, 2014, 39(12): 3563-3566.

[37] Banwell CN. Fundamentals of molecular spectroscopy[M]. London: McGraw-Hill Book Company, 1972.

[38] HITRAN spectroscopic database [EB/OL]. [ 2020- 03- 15]. . http://hitran.iao.ru/molecule

[39] Chen Y B, Wang Z F, Li Z X, et al. Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 μm[J]. Optics Express, 2017, 25(17): 20944-20949.

周智越, 李昊, 崔宇龙, 黄威, 王泽锋. 基于空芯光纤的光泵浦4 μm连续波HBr气体激光器[J]. 光学学报, 2020, 40(16): 1614001. Zhiyue Zhou, Hao Li, Yulong Cui, Wei Huang, Zefeng Wang. Optically Pumped 4 μm CW HBr Gas Laser Based on Hollow-Core Fiber[J]. Acta Optica Sinica, 2020, 40(16): 1614001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!