无机材料学报, 2020, 35 (12): 1349, 网络出版: 2021-03-10  

WO3纳米花的热处理晶格调控及WO3/CdS/α-S异质结的构筑 下载: 3570次

Lattice Control of WO3 Nanoflowers by Heat Treatment and Construction of WO3/CdS/α-S Heterojuntion
林海 1苏玮韬 1朱玉 1彭湃 1冯苗 1,2,*于岩 1,2,*
作者单位
1 福州大学 1. 材料科学与工程学院
2 生态环境材料先进技术福建省高等学校重点实验室, 福州 350108
引用该论文

林海, 苏玮韬, 朱玉, 彭湃, 冯苗, 于岩. WO3纳米花的热处理晶格调控及WO3/CdS/α-S异质结的构筑[J]. 无机材料学报, 2020, 35(12): 1349.

hai LIN, Weitao SU, Yu ZHU, Pai PENG, Miao FENG, Yan YU. Lattice Control of WO3 Nanoflowers by Heat Treatment and Construction of WO3/CdS/α-S Heterojuntion[J]. Journal of Inorganic Materials, 2020, 35(12): 1349.

参考文献

[1] YE S, DING C M, LIU M Y, et al. Water oxidation catalysts for artificial photosynthesis[J]. Advanced Materials, 2019, 31(50): 1902069.

[2] LUO Z B, WANG T, GONG J L. Single-crystal silicon-based electrodes for unbiased solar water splitting: current status and prospects[J]. Chemical Society Reviews, 2019, 48: 2158-2181.

[3] WU Y S, LIU X J, HAN D D, et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis[J]. Nature Communications, 2018, 9(1425): 1-9.

[4] WEI J M, LÜ Q, WANG B C, et al. Synthesis of cubic-relievo Ag3PO4 with high visible-light photocatalytic activity[J]. Journal of Inorganic Materials, 2019, 34(7): 786-790.

[5] WANG Y D, TIAN W, CHEN C, et al. Tungsten trioxide nanostructures for photoelectrochemical water splitting: material engineering and charge carrier dynamic manipulation[J]. Advanced Functional Materials, 2019, 29(23): 1809036.

[6] ZHANG J J, CHANG X X, LI C C, et al. WO3 photoanodes with controllable bulk and surface oxygen vacancies for photoelectrochemical water oxidation[J]. Journal of Materials Chemistry A, 2018, 6: 3350-3354.

[7] FU J W, XU Q L, LOW J X, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B: Environmental, 2019, 243: 556-565.

[8] LI H J, GAO Y Y, ZHOU Y, et al. Construction and nanoscale detection of interfacial charge transfer of elegant Z-scheme WO3/Au/ In2S3 nanowire arrays[J]. Nano Letters, 2016, 16(9): 5547-5552.

[9] CAO F R, MENG L X, WANG M, et al. Gradient energy band driven high-performance self-powered perovskite/CdS photodetector[J]. Advanced Materials, 2019, 30(12): 1806725-1-7.

[10] LIU G, NIU P, YIN L C, et al. α-Sulfur crystals as a visible-light- active photocatalyst[J]. Journal of the American Chemical Society, 2012, 134(22): 9070-9073.

[11] HU W, LIN L, ZHANG R Q, et al. Highly efficient photocatalytic water splitting over edge-modified phosphorene nanoribbons[J]. Journal of the American Chemical Society, 2017, 139(43): 15429-15436.

[12] ZHANG M Y, LIN H L, CAO J, et al. Construction of novel S/CdS type II heterojunction for photocatalytic H2 production under visible light: the intrinsic positive role of elementary α-S[J]. Chemical Engineering Journal, 2017, 321: 484-494.

[13] SUN W T, YU Y, PAN H Y, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes[J]. Journal of the American Chemical Society, 2008, 130(4): 1124-1125.

[14] CHANDRASEKARAN S, ZHANG P X, PENG F, et al. Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting[J]. Journal of Materials Chemistry A, 2019, 7: 6161-6172.

[15] ZHANG H F, ZHOU W W, YANG Y P, et al. 3D WO3/BiVO4/cobalt phosphate composites inverse opal photoanode for efficient photoelectrochemical water splitting[J]. Small, 2017, 16: 1603840-1-7.

[16] LI W J, DA P M, ZHANG Y Y, et al. WO3 nanoflakes for enhanced photoelectrochemical conversion[J]. ACS Nano, 2014, 8(11): 11770-11777.

[17] ZHENG T T, SANG W, HE Z H, et al. Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution[J]. Nano Letters, 2017, 17(12): 7968-7973.

[18] CONG S, GENG F X, ZHAO Z G. Tungsten oxide materials for optoelectronic applications[J]. Advanced Materials, 2016, 28(47): 10518-10528.

[19] CHEN S, ZENG L, TIAN H, et al. Enhanced lattice oxygen reactivity over Ni-modified WO3-based redox catalysts for chemical looping partial oxidation of methane[J]. ACS Catalysis, 2017, 7(5): 3548-3559.

[20] WANG F G, VALENTIN C D, PACCHIONI G. Semiconductor-to- metal transition in WO3-x: nature of the oxygen vacancy[J]. Physical Review B, 2011, 84(7): 073103-1-5.

[21] MA Y L, FENG B, LANG J Y, et al. Synthesis of semi-metallic tungsten trioxide for infrared light photoelectrocatalytic water splitting[J]. The Journal of Physical Chemistry C, 2019, 123(42): 25833-25843.

[22] YAN J Q, WANG T, WU G J, et al. Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting[J]. Advanced Materials, 2019, 27(9): 1580-1586.

[23] BAI S, ZHANG N, GAO C, et al. Defect engineering in photocatalytic materials[J]. Nano Energy, 2018, 53: 296-336.

[24] HUANG Z F, SONG J J, PAN L, et al. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy[J]. Advanced Materials, 2015, 27(36): 5309-5327.

[25] FORMAL F L, PENDLEBURY S R, CORNUZ M, et al. Back electron-hole recombination in hematite photoanodes for water splitting[J]. Journal of the American Chemical Society, 2014, 136(6): 2564-2574.

[26] FORMAL F L, SIVULA K, GRATZEL M. The transient photocurrent and photovoltage behavior of a hematite photoanode under working conditions and the influence of surface treatments[J]. The Journal of Physical Chemistry C, 2012, 116: 26707-26720.

[27] ZHANG N, CHEN C, MEI Z W, et al. Monoclinic tungsten oxide with {100} facet orientation and tuned electronic band structure for enhanced photocatalytic oxidations[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10367-10374.

[28] 张青莲, 姚凤仪, 郭德威, 桂明德. 无机化学丛书. 第五卷, 氧、硫、硒分族. 北京: 科学出版社, 1990: 173-237.

[29] WANG G M, LING Y C, WANG H Y, et al. Hydrogen-treated WO3 nanoflakes show enhanced photostability[J]. Energy & Environmental Science, 2012, 5: 6180-6187.

[30] ZHANG J J, ZHANG P, WANG T, et al. Monoclinic WO3 nanomultilayers with preferentially exposed (002) facets for photoelectrochemical water splitting[J]. Nano Energy, 2015, 11: 189-195.

[31] MENG J, LIN Q Y, CHEN T, et al. Oxygen vacancy regulation on tungsten oxides with specific exposed facets for enhanced visible- light-driven photocatalytic oxidation[J]. Nanoscale, 2018, 10: 2908-2915.

[32] LÜ Y, ZHU Y, ZHU Y. Enhanced photocatalytic performance for the BiPO4-x nanorod induced by surface oxygen vacancy[J]. The Journal of Physical Chemistry C, 2013, 117(36): 18520-18528.

[33] WANG J, JIANG W, LIU D, et al. Photocatalytic performance enhanced via surface bismuth vacancy of Bi6S2O15 core/shell nanowires[J]. Applied Catalysis B: Environmental, 2015(176-177): 306-314.

[34] LI Y S, TANG Z L, ZHANG J Y, et al. Defect engineering of air- treated WO3 and its enhanced visible light-driven photocatalytic and electrochemical performance[J]. The Journal of Physical Chemistry C, 2016, 120: 9750-9763.

[35] ZHONG Y Y, ZHAO G, MA F K, et al. Utilizing photocorrosion- recrystallization to prepare a highly stable and efficient CdS/WS2 nanocomposite photocatalyst for hydrogen evolution[J]. Applied Catalysis B: Environmental, 2016, 199: 466-472.

[36] JIN J, YU J G, GUO D P, et al. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity[J]. Small, 2015, 11(39): 5262-5271.

[37] WANG M Y, CAI L J, WANG Y, et al. Graphene-draped semiconductors for enhanced photocorrosion resistance and photocatalytic properties[J]. Journal of the American Chemical Society, 2017, 139(11): 4144-4151.

[38] ZONG X, HAN J F, MA G J, et al. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation[J]. The Journal of Physical Chemistry C, 2011, 115(24): 12202-12208.

[39] LI J J, WANG Y A, GUO W Z, et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction[J]. Journal of the American Chemical Society, 2003, 125(41): 12567-12575.

[40] MENG S G, CAO Z S, FU X L, et al. Fabrication of hydrophilic S/In2O3 core-shell nanocomposite for enhancement of photocatalytic performance under visible light irradiation[J]. Applied Surface Science, 2015, 324: 188-197.

[41] LIN R, WAN J W, XIONG Y, et al. Quantitative study of charge carrier dynamics in well-defined WO3 nanowires and nanosheets: insight into the crystal facet effect in photocatalysis[J]. Journal of the American Chemical Society, 2018, 140(29): 9078-9082.

林海, 苏玮韬, 朱玉, 彭湃, 冯苗, 于岩. WO3纳米花的热处理晶格调控及WO3/CdS/α-S异质结的构筑[J]. 无机材料学报, 2020, 35(12): 1349. hai LIN, Weitao SU, Yu ZHU, Pai PENG, Miao FENG, Yan YU. Lattice Control of WO3 Nanoflowers by Heat Treatment and Construction of WO3/CdS/α-S Heterojuntion[J]. Journal of Inorganic Materials, 2020, 35(12): 1349.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!