激光与光电子学进展, 2014, 51 (1): 010003, 网络出版: 2014-01-03   

掺稀土光纤的光子暗化研究进展 下载: 928次

Advance in Study on Photodarkening of Rare-Earth Doped Fibers
作者单位
国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
引用该论文

尤洁, 于海龙, 王小林, 周朴, 许晓军. 掺稀土光纤的光子暗化研究进展[J]. 激光与光电子学进展, 2014, 51(1): 010003.

You Jie, Yu Hailong, Wang Xiaolin, Zhou Pu, Xu Xiaojun. Advance in Study on Photodarkening of Rare-Earth Doped Fibers[J]. Laser & Optoelectronics Progress, 2014, 51(1): 010003.

参考文献

[1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. J Opt Soc Am B, 2010, 27(11): B63-B92.

[2] 朱宗玖, 许立新, 毛庆和, 等. 高掺杂浓度掺镱光纤的光子暗化效应[J]. 光子学报, 2007, 36(1): 26-29.

    Zhu Zongjiu, Xu Lixin, Mao Qinghe, et al.. Photodarkening in ytterbium-doped fibers with high doping concentration[J]. Anta Photonica Sinica, 2007, 36(1): 26-29.

[3] 杨 玲, 陈根详, 梁 毅, 等. 掺锗光纤的紫外光敏特性[J]. 光通信技术, 1996, 20(3): 232-236.

    Yang Ling, Chen Genxiang, Liang Yi, et al.. Ultraviolet photosensitivity in Ge-doped fiber[J]. Optical Communication Technology, 1996, 20(3): 232-236.

[4] 何 伟, 李剑芝, 梅家纯. 掺锗石英光纤光致折射率变化的实验研究[J]. 无机材料学报, 2005, 20(1): 201-214.

    He Wei, Li Jianzhi, Mei Jiachun. Experimental study on photolytic index changes in germanosilicate fiber[J]. J Inorganic Materials, 2005, 20(1): 201-214.

[5] 刘方新, 张辰华, 李宗民, 等. 光纤伽马射线辐照感生损耗的研究[J]. 中国科学技术大学学报, 1994, 24(3): 390-393.

    Liu Fangxin, Zhang Chenhua, Li Zongmin, et al.. Research on r-ray radiolytic loss[J]. J University of Science and Technology of China, 1994, 24(3): 390-393.

[6] 韩艳玲, 肖 文, 伊小素, 等. 辐照光纤的主动恢复效应[J]. 红外与激光工程, 2008, 37(1): 128-131.

    Han Yanling, Xiao Wen, Yi Xiaosu, et al.. Active recovery effect of irradiation optical fiber[J]. Infrared and Laser Engineering, 2008, 37(1): 128-131.

[7] 盛于邦, 邢瑞先, 栾怀训, 等. 伽马辐照对掺镱硅酸盐玻璃光学性能的影响[J]. 无机材料学报, 2012, 27(8): 860-864.

    Sheng Yubang, Xing Ruixian, Luan Huaixun, et al.. Gamma radiation effects on the optical properties of Yb-doped silicate glasses[J]. J Inorganic Materials, 2012, 27(8): 860-864.

[8] 吴武明, 肖 虎, 许将明, 等. 光纤激光同带级联抽运的研究进展[J]. 激光与光电子学进展, 2011, 48(9): 091402.

    Wu Wuming, Xiao Hu, Xu Jiangming, et al.. Research progress of tandem-pumped fiber laser[J]. Laser & Optoelectronics Progress, 2011, 48(9): 091402.

[9] J Canning, Adrian L G Carter, M G Sceats. Correlation between photodarkening and index change during 193 nm irradiation of germanosilicate and phosphosilicate fibers[J]. J Lightwave Technol, 1997, 15(8): 1348-1356.

[10] Nathaniel Groothoff, John Canning, Mattias slund, et al.. 193 nm photodarkening of ytterbium doped optical fibre[C]. BGPP, 2007. BTuC2.

[11] Cheng Y, Oton C J, Boyland A J, et al.. Photodarkening of 488 nm-pumped Sm3+-doped germanosilicate fiber laser[C]. CLEO, 2009.

[12] Lauzon J, Sceats M G, Krug P A, et al.. UV-induced transient photodarkening and photoluminescence in Ge-doped optical fibers[C]. OFC, 1994.

[13] I Manek-Hnninger, J Boullet, T Cardinal, et al.. Photodarkening and photobleacking of an ytterbium-doped silica double-clad LMA fiber[J]. Opt Epxress, 2007, 15(4): 1606-1611.

[14] Brian P Fox, Kelly Simmons-Potter, William J Thomes Jr, et al.. Gamma-radiation-induced photodarkening in unpumped optical fibers doped with rare-earth constituents[J]. IEEE Trans Nuclear Science, 2010, 57(3): 1618-1625.

[15] T Arai, K Ichii, S Tanigawa, et al.. Defect analysis of photodarkened and gamma-ray irradiated ytterbium-doped silica glasses[C]. OFC, 2009. OWT2.

[16] Martin Leich, Sylvia Jetschke, Sonja Unger A, et al.. Temperature influence on the photodarkening kinetics in Yb-doped silica fibers[J]. J Opt Soc Am B, 2011, 28(1): 65-68.

[17] Sderlund M J, Ponsoda J J M I, Koplow J P, et al.. Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling[J]. Opt Express, 2009, 17(12): 9940-9946.

[18] Mikko J Sderlund, Joan J Montiel I Ponsoda, Simo K T Tammela, et al.. Mode-induced transverse photodarkening loss variations in large-mode-area ytterbium doped silica fibers[J]. Opt Express, 2008, 16(14): 10633-10640.

[19] Leich M, Jetschke S, Unger S, et al.. Acceleration of photodarkening measurements in Yb-doped fibers by enhanced temperatures[C]. CLEO Europe, 2009.

[20] M M Broer, D M Krol, D J Digiovanni. Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber[J]. Opt Lett, 1993, 18(10): 799-801.

[21] Atkins G R, Ouellette F. Reversible photodarkening and bleaching in Tb3+-doped optical fibers[J]. Opt Lett, 1994, 19(13): 951-953.

[22] B P Fox, Z V Schneider, K Simmons-Potter, et al.. Spectrally resolved transmission loss in gamma irradiated Yb-doped optical fibers[J]. IEEE J Quantum Electron, 2008, 44(6): 581-586.

[23] B Tortech, A M Van Uffelen, J P Meunier, et al.. Gamma radiation induced loss in erbium doped optical fibers[J]. J Non-Cryst Solids, 2007, 353(5-7): 477-480.

[24] Glebov L B. Linear and nonlinear photoionization of silicate glasses[J]. Glass Sci Technol, 2002, 75(C2): 73-90.

[25] Williams G M, Wright B M, Mack W D, et al.. Projecting the performance of erbium-doped fiber devices in a space radiation environment[C]. SPIE, 1999. 3848: 271-280.

[26] Askins C G, Putnam M A. Photodarkening and photobleaching in fiber optic Bragg gratings[J]. J Lightwave Technol, 1997, 15(8): 1363-1370.

[27] J J Koponen, M J Sderlund, S K Tammela. Measuring photodarkening from single-mode ytterbium doped silica fibers[J]. Opt Express, 2006, 14(24): 11539-11544.

[28] Gebavi H, Taccheo S, Milanese D, et al.. Photodarkening measurements in Yb-doped silica fibers in correlation with cooperative luminescence[C]. SPIE, 2012, 8433: 843322.

[29] C Basu, S Yoo, A J Boyland, et al.. Influence of temperature on the post-irradiation temporal loss evolution in Yb-doped aluminosilicate fibers, photodarkened by 488 nm CW irradiation [J]. Opt Lett, 2007, 32(12): 1626-1628.

[30] Kitabayashi T, Ikeda M, Nakai M, et al.. Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping[C]. OFC, 2006. OThC5.

[31] Sylvia Jetschke, Sonja Unger, Ulrich Rpke, et al.. Photodarkening in Yb doped fibers experimental evidence of equilibrium states depending on the pump power[J]. Opt Express, 2007, 15(22): 14838-14843.

[32] Joan J Montiel I Ponsoda, Mikko J Sderlund, Jeffrey P Koplow, et al.. Photodarkening-induced increase of fiber temperature[J]. Appl Opt, 2010, 49(22): 4139-4144.

[33] Inoue N, Shirakawa A, Ueda K. Photodarkening and photobleaching of Yb-doped fibers by laser diodes[C]. CLEO, 2010. CMGG5.

[34] Piccoli R, Mechin D, Robin T, et al.. Lifetime reduction due to photodarkening phenomenon in ytterbium-doped fibers and rate equation term[J]. Opt Lett, 2013, 38(21): 4370-4373.

[35] O Berné, M Caussanel, Gilard O. A model for the prediction of EDFA gain in a space radiation environment[J]. IEEE Photon Technol Lett, 2004, 16(10): 2227-2229.

[36] Fox B P, Simmons-Potter K, Simmons J H, et al.. Radiation damage effects in doped fiber materials[C]. SPIE, 2008, 6873: 68731F.

[37] D L Griscom, M E Gingerich, E J Friebele. Radiation induced defects in glasses: origin of power-lawdependence of concentration on dose[J]. Phys Rev Lett, 1993, 71(7): 1019-1022.

[38] Manek-Hnninger I, Boullet J, Cardinal T, et al.. Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber[J]. Opt Express, 2007, 15(4): 1606-1611.

[39] Xiong L, Sekiya E H, Saito K. Yb-doped silica preform precursor nanoparticles and the photodarkening in them[C]. ACP, 2009. ThBB4.

[40] R Peretti, A-M Jurdyc, B J Acquier, et al.. How do traces of thulium explain photodarkening in Yb doped fibers[J]. Opt Express, 2010, 18(19): 20455-20460.

[41] Jetschke S, Unger S, Schwuchow A, et al.. Evidence of Tm impact in low-photodarkening Yb-doped fibers[J]. Opt Express, 2013, 21(6): 7590-7598.

[42] Koponen J, Laurila M, Hotoleanu M. Demonstration of spatial distribution of photodarkening in Yb-doped[J]. Electron Lett, 2008, 44(16): 960-961.

[43] Hotoleanu M, Koponen J, Kokki T, et al.. Experimental verification of spatial distribution of photodarkening in large mode area ytterbium doped fibers[C]. CLEO, 2008. CFS3.

[44] Changgeng Ye, Joan J Montiel I Ponsoda, Ari Tervonen, et al.. Refractive index change in ytterbium-doped fibers induced by photodarkening and thermal bleaching[J]. Appl Opt, 2010, 49(30): 5799-5805.

[45] Taccheo S, Gebavi H, Monteville A, et al.. Concentration dependence and self-similarity of photodarkening losses induced in Yb-doped fibers by comparable excitation[J]. Opt Express, 2011, 19(20): 19340-19345.

[46] Zhang Xiaojie, Izutsu M, Kumagai H, et al.. Femtosecond optical Kerr studies of photodarkening effect on nonlinear optical properties of CdSxSe1-x doped glass[J]. Opt Commun, 1997, 142(4-6): 273-278.

[47] Paul M C, Yu Kir′Yanov, A V B. Yb2O3 doped yttrium-alumino-silicate nano-particles based LMA optical fibers for high-power fiber lasers[J]. J Lightwave Technol, 2012, 30(13): 2062-2068.

[48] Mitsunori Saito, Kaoru Nakajima, M Shishido. Polymer coating on infrared silver halide fiber for photodarkening protection[J]. J Lightwave Technol, 2002, 20(3): 441-447.

[49] Hrvoje Gebavi, Stefano Taccheo, Daniel Milanese, et al.. Temporal evolution and correlation between cooperative luminescence and photodarkening in ytterbium doped silica fibers[J]. Opt Express, 2011, 19(25): 25078-25085.

[50] Engholm M, Jelger P, Laurell F, et al.. Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping optical fibers[J]. Opt Lett, 2009, 34(8): 1285-1287.

[51] Sylvia Jetschke, Sonja Unger, Anka Schwuchow, et al.. Efficient Yb laser fibers with low photodarkening by optimization of the core composition[J]. Opt Express, 2008, 16(20): 15540-15545.

[52] M E Likhachev, S S Aleshkina, A V Shubin, et al.. Large-mode-area highly Yb-doped photodarkening-free Al2O3-P2O5-SiO2-based fiber[C]. CLEO Europe, 2011. CJ_P24.

[53] Yu C. Research on photodarkening in rare earth doped fibers[J]. J Rare Earths, 2012, 30(11): 1102-1105.

[54] S Yoo, M P Kalita, A J Boyland, et al.. Ytterbium doped nano-crystalline optical fiber for reduced photodarkening [C]. CLEO, 2010. JWA98.

[55] Sylvia Jetschke, Martin Leich, Sonja Unger, et al.. Influence of Tm- or Er-codoping on the photodarkening kinetics in Yb fibers[J]. Opt Express, 2011, 19(15): 14473-14478.

[56] Sderlund M J, Montiel Ponsoda J J, Honkanen S. Measurement of thermal binding energy of photodarkening-induced color centers in ytterbium-doped silica fibers[C]. CLEO Europe, 2009. CE3-3.

[57] Gebavi H, Taccheo S, Lablonde L, et al.. Mitigation of photodarkening phenomenon in fiber lasers by 633 nm light exposure[J]. Opt Lett, 2013, 38(2): 196-198.

[58] Jetschke S, Unger S, Rpke U, et al.. Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power[J]. Opt Express, 2007, 15(22): 14838-14843.

尤洁, 于海龙, 王小林, 周朴, 许晓军. 掺稀土光纤的光子暗化研究进展[J]. 激光与光电子学进展, 2014, 51(1): 010003. You Jie, Yu Hailong, Wang Xiaolin, Zhou Pu, Xu Xiaojun. Advance in Study on Photodarkening of Rare-Earth Doped Fibers[J]. Laser & Optoelectronics Progress, 2014, 51(1): 010003.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!