激光与光电子学进展, 2020, 57 (7): 071602, 网络出版: 2020-03-31   

钙钛矿微纳激光器研究进展 下载: 4335次特邀综述封底文章

Review of Perovskite Micro -and Nano-Lasers
黄斯豪 1,3刘征征 1,3杜鹃 1,2,3,*冷雨欣 1,2,3,4,**
作者单位
1 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
2 中国科学院大学杭州高等研究院, 浙江 杭州 310024
3 中国科学院大学材料与光电研究中心, 北京 100049
4 上海科技大学物质科学与技术学院, 上海 201210
引用该论文

黄斯豪, 刘征征, 杜鹃, 冷雨欣. 钙钛矿微纳激光器研究进展[J]. 激光与光电子学进展, 2020, 57(7): 071602.

Sihao Huang, Zhengzheng Liu, Juan Du, Yuxin Leng. Review of Perovskite Micro -and Nano-Lasers[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071602.

参考文献

[1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494.

[2] Gather M C, Yun S H. Single-cell biological lasers[J]. Nature Photonics, 2011, 5(7): 406-410.

[3] Leonetti M, Conti C, López C. Random lasers: active mode control and gating[J]. Optics and Photonics News, 2013, 24(12): 29.

[4] Miller D. Device requirements for optical interconnects to silicon chips[J]. Proceedings of the IEEE, 2009, 97(7): 1166-1185.

[5] Kim T. McCall J G, Jung Y H, et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics[J]. Science, 2013, 340(6129): 211-216.

[6] Hill M T, Gather M C. Advances in small lasers[J]. Nature Photonics, 2014, 8(12): 908-918.

[7] Blanche P A, Bablumian A, Voorakaranam R, et al. Holographic three-dimensional telepresence using large-area photorefractive polymer[J]. Nature, 2010, 468(7320): 80-83.

[8] Johnson J C, Choi H J, Knutsen K P, et al. Single gallium nitride nanowire lasers[J]. Nature Materials, 2002, 1(2): 106-110.

[9] Huang M H. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292(5523): 1897-1899.

[10] Ma R M, Ota S, Li Y M, et al. Explosives detection in a lasing plasmon nanocavity[J]. Nature Nanotechnology, 2014, 9(8): 600-604.

[11] Guo P F, Zhuang X J, Xu J Y, et al. Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires[J]. Nano Letters, 2013, 13(3): 1251-1256.

[12] 纪兴启, 李国辉, 崔艳霞, 等. 有机-无机杂化钙钛矿激光器的研究进展[J]. 半导体技术, 2018, 43(6): 401-413, 442.

    Ji X Q, Li G H, Cui Y X, et al. Research progress in organic-inorganic hybridized perovskite lasers[J]. Semiconductor Technology, 2018, 43(6): 401-413, 442.

[13] Choquette K D, Hou H Q. Vertical-cavity surface emitting lasers: moving from research to manufacturing[J]. Proceedings of the IEEE, 1997, 85(11): 1730-1739.

[14] Klimov V I. Optical gain and stimulated emission in nanocrystal quantum dots[J]. Science, 2000, 290(5490): 314-317.

[15] Duan X F, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers[J]. Nature, 2003, 421(6920): 241-245.

[16] Tong L M, Gattass R R, Ashcom J B, et al. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 2003, 426(6968): 816-819.

[17] Altug H, Vuckovic J. Photonic crystal nanocavity array laser[J]. Optics Express, 2005, 13(22): 8819-8828.

[18] Zhang Q, Liu X F. Utama M I B, et al. Phonon-assisted anti-stokes lasing in ZnTe nanoribbons[J]. Advanced Materials, 2016, 28(2): 276-283.

[19] Veldhuis S A, Boix P P, Yantara N, et al. Perovskite materials for light-emitting diodes and lasers[J]. Advanced Materials, 2016, 28(32): 6804-6834.

[20] Fan F J, Voznyy O, Sabatini R P, et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy[J]. Nature, 2017, 544(7648): 75-79.

[21] Jeon T, Kim S J, Yoon J, et al. Hybrid perovskites: effective crystal growth for optoelectronic applications[J]. Advanced Energy Materials, 2017, 7(19): 1602596.

[22] Liao Q, Jin X, Fu H B. Tunable halide perovskites for miniaturized solid-state laser applications[J]. Advanced Optical Materials, 2019, 7(17): 1900099.

[23] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.

[24] Wang K, Subhani W S, Wang Y L, et al. Metal cations in efficient perovskite solar cells: progress and perspective[J]. Advanced Materials, 2019, 31(50): 1902037.

[25] Wang K Y, Wang S, Xiao S M, et al. Recent advances in perovskite micro- and nanolasers[J]. Advanced Optical Materials, 2018, 6(18): 1800278.

[26] Xing G C, Mathews N, Lim S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J]. Nature Materials, 2014, 13(5): 476-480.

[27] Zhang Q, Su R, Du W N, et al. Advances in small perovskite-based lasers[J]. Small Methods, 2017, 1(9): 1700163.

[28] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514.

[29] Makarov S, Furasova A, Tiguntseva E, et al. Halide-perovskite nanophotonics: halide-perovskite resonant nanophotonics (advanced optical materials 1/2019)[J]. Advanced Optical Materials, 2019, 7(1): 1970002.

[30] Jiang Y, Wang X, Pan A L. Properties of excitons and photogenerated charge carriers in metal halide perovskites[J]. Advanced Materials, 2019, 31(47): 1806671.

[31] Saba M, Cadelano M, Marongiu D, et al. Correlated electron-hole plasma in organometal perovskites[J]. Nature Communications, 2014, 5: 5049.

[32] Wang Y, Li X M, Song J Z, et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics[J]. Advanced Materials, 2015, 27(44): 7101-7108.

[33] Chan Y, Steckel J S, Snee P T, et al. Blue semiconductor nanocrystal laser[J]. Applied Physics Letters, 2005, 86(7): 073102.

[34] Sutherland B R, Hoogland S, Adachi M M, et al. Conformal organohalide perovskites enable lasing on spherical resonators[J]. ACS Nano, 2014, 8(10): 10947-10952.

[35] Yakunin S, Protesescu L, Krieg F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 2015, 6: 8056.

[36] Papagiorgis P, Manoli A, Protesescu L, et al. Efficient optical amplification in the nanosecond regime from formamidinium lead iodide nanocrystals[J]. ACS Photonics, 2018, 5(3): 907-917.

[37] Wang S, Yu J H, Zhang M Y, et al. Stable, strongly emitting cesium lead bromide perovskite nanorods with high optical gain enabled by an intermediate monomer reservoir synthetic strategy[J]. Nano Letters, 2019, 19(9): 6315-6322.

[38] Sutherland B R, Hoogland S, Adachi M M, et al. Perovskite thin films via atomic layer deposition[J]. Advanced Materials, 2015, 27(1): 53-58.

[39] Huang L Y. Lambrecht W R L. Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3[J]. Physical Review B, 2013, 88(16): 165203.

[40] Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Letters, 2013, 13(4): 1764-1769.

[41] Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696.

[42] Fu Y P, Zhu H M, Stoumpos C C, et al. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I)[J]. ACS Nano, 2016, 10(8): 7963-7972.

[43] Zhang Q, Su R, Liu X F, et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets[J]. Advanced Functional Materials, 2016, 26(34): 6238-6245.

[44] Zhu H M, Fu Y P, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nature Materials, 2015, 14(6): 636-642.

[45] Fu Y P, Zhu H M, Schrader A W, et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability[J]. Nano Letters, 2016, 16(2): 1000-1008.

[46] Hao F, Stoumpos C C. Chang R P H, et al. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells[J]. Journal of the American Chemical Society, 2014, 136(22): 8094-8099.

[47] Walters G, Sutherland B R, Hoogland S, et al. Two-photon absorption in organometallic bromide perovskites[J]. ACS Nano, 2015, 9(9): 9340-9346.

[48] Gu Z Y, Wang K Y, Sun W Z, et al. Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers[J]. Advanced Optical Materials, 2016, 4(3): 472-479.

[49] Kalanoor B S, Gouda L, Gottesman R, et al. Third-order optical nonlinearities in organometallic methylammonium lead iodide perovskite thin films[J]. ACS Photonics, 2016, 3(3): 361-370.

[50] Zhang W, Peng L, Liu J, et al. Controlling the cavity structures of two-photon-pumped perovskite microlasers[J]. Advanced Materials, 2016, 28(21): 4040-4046.

[51] Gao Y S, Wang S, Huang C, et al. Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers[J]. Scientific Reports, 2017, 7: 45391.

[52] Liu Z Z, Hu Z P, Zhang Z Y, et al. Two-photon pumped amplified spontaneous emission and lasing from formamidinium lead bromine nanocrystals[J]. ACS Photonics, 2019, 6(12): 3150-3158.

[53] Wang Y, Li X M, Zhao X, et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals[J]. Nano Letters, 2016, 16(1): 448-453.

[54] Xu Y Q, Chen Q, Zhang C F, et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers[J]. Journal of the American Chemical Society, 2016, 138(11): 3761-3768.

[55] Wang X X, Zhou H, Yuan S P, et al. Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing[J]. Nano Research, 2017, 10(10): 3385-3395.

[56] Yuan Z, Shu Y, Tian Y, et al. A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks[J]. Chemical Communications, 2015, 51(91): 16385-16388.

[57] Bekenstein Y, Koscher B A, Eaton S W, et al. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies[J]. Journal of the American Chemical Society, 2015, 137(51): 16008-16011.

[58] He L N, Özdemir Ş K, Yang L. Whispering gallery microcavity lasers[J]. Laser & Photonics Reviews, 2013, 7(1): 60-82.

[59] Zhang Q, Ha S T, Liu X F, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers[J]. Nano Letters, 2014, 14(10): 5995-6001.

[60] Liao Q, Hu K, Zhang H H, et al. Perovskite microdisk microlasers self-assembled from solution[J]. Advanced Materials, 2015, 27(22): 3405-3410.

[61] Li G H, Che T, Ji X Q, et al. Nanodevices: record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite (adv. Funct. Mater. 2/2019)[J]. Advanced Functional Materials, 2019, 29(2): 1970012.

[62] Li B B, Zhou T J, Fang X, et al. Temperature dependent geometry in perovskite microcrystals for whispering gallery and Fabry-Pérot mode lasing[J]. Journal of Materials Chemistry C, 2019, 7(14): 4102-4108.

[63] Guo P F, Hossain M K, Shen X, et al. Room-temperature red-green-blue whispering-gallery mode lasing and white-light emission from cesium lead halide perovskite (CsPbX3, X=Cl, Br, I) microstructures[J]. Advanced Optical Materials, 2018, 6(3): 1700993.

[64] Wang K Y, Sun S, Zhang C, et al. Whispering-gallery-mode based CH3NH3PbBr3 perovskite microrod lasers with high quality factors[J]. Materials Chemistry Frontiers, 2017, 1(3): 477-481.

[65] Tang B, Dong H X, Sun L X, et al. Single-mode lasers based on cesium lead halide perovskite submicron spheres[J]. ACS Nano, 2017, 11(11): 10681-10688.

[66] Du W N, Zhang S, Wu Z Y, et al. Unveiling lasing mechanism in CsPbBr3 microsphere cavities[J]. Nanoscale, 2019, 11(7): 3145-3153.

[67] Yang Z, Lu J F. ZhuGe M H, et al. Controllable growth of aligned monocrystalline CsPbBr3 microwire arrays for piezoelectric-induced dynamic modulation of single-mode lasing[J]. Advanced Materials, 2019, 31(18): 1900647.

[68] Zhizhchenko A, Syubaev S, Berestennikov A, et al. Single-mode lasing from imprinted halide-perovskite microdisks[J]. ACS Nano, 2019, 13(4): 4140-4147.

[69] Huang C, Sun W Z, Liu S, et al. Highly controllable lasing actions in lead halide perovskite-Si3N4 hybrid micro-resonators[J]. Laser & Photonics Reviews, 2019, 13(3): 1800189.

[70] Zhou B E, Jiang M M, Dong H X, et al. High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity[J]. ACS Photonics, 2019, 6(3): 793-801.

[71] Hu Z P, Liu Z Z, Bian Y, et al. Enhanced two-photon-pumped emission from in situ synthesized nonblinking CsPbBr3/SiO2 nanocrystals with excellent stability[J]. Advanced Optical Materials, 2018, 6(3): 1700997.

[72] Liu Z Z, Hu Z P, Shi T C, et al. Stable and enhanced frequency up-converted lasing from CsPbBr3 quantum dots embedded in silica sphere[J]. Optics Express, 2019, 27(7): 9459-9466.

[73] Kurahashi N, Nguyen V C, Sasaki F, et al. Whispering gallery mode lasing in lead halide perovskite crystals grown in microcapillary[J]. Applied Physics Letters, 2018, 113(1): 011107.

[74] Tang X S, Yang J, Li S Q, et al. Quantum dots: single halide perovskite/semiconductor core/shell quantum dots with ultrastability and nonblinking properties[J]. Advanced Science, 2019, 6(18): 1970107.

[75] Yang J, Liu Z Z, Zeng F J, et al. High-quality single-mode lasers based on zero-dimensional cesium lead halide perovskites[J]. Solar RRL, 2019, 3(10): 1900127.

[76] Eaton S W, Fu A, Wong A B, et al. Semiconductor nanowire lasers[J]. Nature Reviews Materials, 2016, 1(6): 16028.

[77] Ma Y G, Guo X, Wu X Q, et al. Semiconductor nanowire lasers[J]. Advances in Optics and Photonics, 2013, 5(3): 216-273.

[78] Xing J, Liu X F, Zhang Q, et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers[J]. Nano Letters, 2015, 15(7): 4571-4577.

[79] Eaton S W, Lai M L, Gibson N A, et al. Lasing in robust cesium lead halide perovskite nanowires[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(8): 1993-1998.

[80] Park K, Lee J W, Kim J D, et al. Light-matter interactions in cesium lead halide perovskite nanowire lasers[J]. The Journal of Physical Chemistry Letters, 2016, 7(18): 3703-3710.

[81] Pushkarev A P, Korolev V I, Markina D I, et al. Afew-minute synthesis of CsPbBr3 nanolasers with a high quality factor by spraying at ambient conditions[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 1040-1048.

[82] Li Y, Guan S T, Liu Y, et al. Lasing properties of cesium lead halide perovskite nanowires fabricated by one-drop self-assembly and ion-exchange methods[J]. Optics Express, 2018, 26(26): 33856-33864.

[83] Liu Z, Shang Q Y, Li C, et al. Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires[J]. Applied Physics Letters, 2019, 114(10): 101902.

[84] Liu P, He X X, Ren J H, et al. Organic-inorganic hybrid perovskite nanowire laser arrays[J]. ACS Nano, 2017, 11(6): 5766-5773.

[85] Wang X X, Shoaib M, Wang X, et al. High-quality in-plane aligned CsPbX3 perovskite nanowire lasers with composition-dependent strong exciton-photon coupling[J]. ACS Nano, 2018, 12(6): 6170-6178.

[86] Hu Z P, Liu Z Z, Bian Y, et al. Robustcesium lead halide perovskite microcubes for frequency upconversion lasing[J]. Advanced Optical Materials, 2017, 5(22): 1700419.

[87] Liu Z Z, Yang J, Du J, et al. Robust subwavelength single-mode perovskite nanocuboid laser[J]. ACS Nano, 2018, 12(6): 5923-5931.

[88] Mi Y, Liu Z X, Shang Q Y, et al. Fabry-pérot oscillation and room temperature lasing in perovskite cube-corner pyramid cavities[J]. Small, 2018, 14(9): 1703136.

[89] Yang L, Li Z Q, Liu C, et al. Temperature-dependent lasing of CsPbI3 triangular pyramid[J]. The Journal of Physical Chemistry Letters, 2019, 10(22): 7056-7061.

[90] Deschler F, Price M, Pathak S, et al. Highphotoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors[J]. The Journal of Physical Chemistry Letters, 2014, 5(8): 1421-1426.

[91] Wang Y, Li X M, Nalla V, et al. Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals[J]. Advanced Functional Materials, 2017, 27(13): 1605088.

[92] Chen S T, Nurmikko A. Excitonic gain and laser emission from mixed-cation halide perovskite thin films[J]. Optica, 2018, 5(9): 1141-1149.

[93] Pourdavoud N, Haeger T, Mayer A, et al. Room-temperature stimulated emission and lasing in recrystallized cesium lead bromide perovskite thin films[J]. Advanced Materials, 2019, 31(39): 1903717.

[94] Saliba M, Wood S M, Patel J B, et al. Structured organic-inorganic perovskite toward a distributed feedback laser[J]. Advanced Materials, 2016, 28(5): 923-929.

[95] Wiersma D S. The physics and applications of random lasers[J]. Nature Physics, 2008, 4(5): 359-367.

[96] Sapienza R. Determining random lasing action[J]. Nature Reviews Physics, 2019, 1(11): 690-695.

[97] Dhanker R, Brigeman A N, Larsen A V, et al. Random lasing in organo-lead halide perovskite microcrystal networks[J]. Applied Physics Letters, 2014, 105(15): 151112.

[98] Liu S, Sun W Z, Li J K, et al. Random lasing actions in self-assembled perovskite nanoparticles[J]. Optical Engineering, 2016, 55(5): 057102.

[99] Xu L, Meng Y, Xu C X, et al. Room temperature two-photon-pumped random lasers inFAPbBr3/polyethylene oxide (PEO) composite perovskite thin film[J]. RSC Advances, 2018, 8(64): 36910-36914.

[100] Safdar A, Wang Y, Krauss T F. Random lasing in uniform perovskite thin films[J]. Optics Express, 2018, 26(2): A75-A84.

[101] Shirasaki Y, Supran G J, Bawendi M G, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature Photonics, 2013, 7(1): 13-23.

[102] Li X M, Wang Y, Sun H D, et al. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing[J]. Advanced Materials, 2017, 29(36): 1701185.

[103] Yuan S, Chen D Q, Li X Y, et al. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing[J]. ACS Applied Materials & Interfaces, 2018, 10(22): 18918-18926.

[104] Wang Y C, Li H, Hong Y H, et al. Flexibleorganometal-halide perovskite lasers for speckle reduction in imaging projection[J]. ACS Nano, 2019, 13(5): 5421-5429.

[105] Tang X S, Bian Y, Liu Z Z, et al. Room-temperature up-conversion random lasing from CsPbBr3 quantum dots with TiO2 nanotubes[J]. Optics Letters, 2019, 44(19): 4706-4709.

黄斯豪, 刘征征, 杜鹃, 冷雨欣. 钙钛矿微纳激光器研究进展[J]. 激光与光电子学进展, 2020, 57(7): 071602. Sihao Huang, Zhengzheng Liu, Juan Du, Yuxin Leng. Review of Perovskite Micro -and Nano-Lasers[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071602.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!