激光与光电子学进展, 2021, 58 (2): 0200001, 网络出版: 2021-01-19   

基于相关全息原理的散射成像技术及其进展 下载: 2778次封面文章特邀综述

Progress on Scattering Imaging Technologies Based on Correlation Holography
作者单位
华侨大学信息科学与工程学院, 福建省光传输与变换重点实验室, 福建 厦门 361021
引用该论文

陈子阳, 陈丽, 范伟如, 卢腾飞, 沈少鑫, 蒲继雄. 基于相关全息原理的散射成像技术及其进展[J]. 激光与光电子学进展, 2021, 58(2): 0200001.

Chen Ziyang, Chen Li, Fan Weiru, Lu Tengfei, Shen Shaoxin, Pu Jixiong. Progress on Scattering Imaging Technologies Based on Correlation Holography[J]. Laser & Optoelectronics Progress, 2021, 58(2): 0200001.

参考文献

[1] 邵晓鹏, 苏云, 刘金鹏, 等. 计算成像内涵与体系(特邀)[J]. 光子学报, 2021, 50(5): 0511001.

    Shao X P, Su Y, Liu J P, et al. Connotation and system of computational imaging(invited)[J]. Acta Photonica Sinica, 2021, 50(5): 0511001.

[2] 邵晓鹏, 刘飞, 李伟, 等. 计算成像技术及应用最新进展[J]. 激光与光电子学进展, 2020, 57(2): 020001.

    Shao X P, Liu F, Li W, et al. Latest progress in computational imaging technology and application[J]. Laser & Optoelectronics Progress, 2020, 57(2): 020001.

[3] 左超, 冯世杰, 张翔宇, 等. 深度学习下的计算成像: 现状、挑战与未来[J]. 光学学报, 2020, 40(1): 0111003.

    Zuo C, Feng S J, Zhang X Y, et al. Deep learning based computational imaging: status, challenges, and future[J]. Acta Optica Sinica, 2020, 40(1): 0111003.

[4] Klyshko D N. A simple method of preparing pure states of an optical field, of implementing the Einstein-Podolsky-Rosen experiment, and of demonstrating the complementarity principle[J]. Soviet Physics Uspekhi, 1988, 31(1): 74-85.

[5] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429-R3432.

[6] Scarcelli G, Berardi V, Shih Y. Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?[J]. Physical Review Letters, 2006, 96(6): 063602.

[7] Shih Y. Quantum imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4): 1016-1030.

[8] Bennink R S, Bentley S J, Boyd R W. “two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11): 113601.

[9] Gatti A, Brambilla E, Bache M, et al. Correlated imaging, quantum and classical[J]. Physical Review A, 2004, 70: 013802.

[10] Valencia A, Scarcelli G, D'Angelo M, et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 2005, 94(6): 063601.

[11] Zhai Y H, Chen X H, Zhang D, et al. Two-photon interference with true thermal light[J]. Physical Review A, 2005, 72(4): 043805.

[12] Gatti A, Bondani M, Lugiato L A, et al. Comment on “can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?”[J]. Physical Review Letters, 2007, 98(3): 039301.

[13] ShihY. The physics of ghost imaging[M]//Cohen L, Poor H V, Scully M O. Classical, semi-classical and quantum noise. New York: Springer, 2011: 169-222. 10.1007/978-1-4419-6624-7_14

[14] Shapiro J H, Boyd R W. The physics of ghost imaging[J]. Quantum Information Processing, 2012, 11(4): 949-993.

[15] Shih Y. The physics of ghost imaging: nonlocal interference or local intensity fluctuation correlation?[J]. Quantum Information Processing, 2012, 11(4): 995-1001.

[16] Shapiro J H, Boyd R W. Response to “The physics of ghost imaging: nonlocal interference or local intensity fluctuation correlation?”[J]. Quantum Information Processing, 2012, 11(4): 1003-1011.

[17] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802.

[18] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 2009, 79(5): 053840.

[19] Candes E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.

[20] Candès E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.

[21] CandèsE J. Compressive sampling[C]//Proceedings of the International Congress of Mathematicians Madrid, August 22-30, 2006, Zuerich. Switzerland: European Mathematical Society Publishing House, 2006: 1433-1452. 10.4171/022-3/69

[22] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

[23] Candes E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.

[24] Candès E J, Romberg J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 2007, 23(3): 969-985.

[25] Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.

[26] Guarnieri, M. The Television: from mechanics to electronics[J]. IEEE Industrial Electronics Magazine, 2010, 4(4): 43-45.

[27] BairdJ L. Apparatus for transmitting views or images to a distance: US1699270[P]. 1929-01-15.

[28] Cheng J, Han S S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 2004, 92(9): 093903.

[29] Greenberg J, Krishnamurthy K, Brady D. Compressive single-pixel snapshot X-ray diffraction imaging[J]. Optics Letters, 2014, 39(1): 111-114.

[30] Zhang A X, He Y H, Wu L A, et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 2018, 5(4): 374-377.

[31] Bondani M, Puddu E, Degiovanni I P, et al. Chaotically seeded parametric downconversion for ghost imaging[J]. Journal of the Optical Society of America B, 2008, 25(7): 1203-1213.

[32] Radwell N, Mitchell K J, Gibson G M, et al. Single-pixel infrared and visible microscope[J]. Optica, 2014, 1(5): 285-289.

[33] Edgar M P, Gibson G M, Bowman R W, et al. Simultaneous real-time visible and infrared video with single-pixel detectors[J]. Scientific Reports, 2015, 5: 10669.

[34] Watts C M, Shrekenhamer D, Montoya J, et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 2014, 8(8): 605-609.

[35] Stantchev R I, Sun B, Hornett S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2016, 2(6): e1600190.

[36] Zhao C Q, Gong W L, Chen M L, et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 2012, 101(14): 141123.

[37] Howland G A, Lum D J, Ware M R, et al. Photon counting compressive depth mapping[J]. Optics Express, 2013, 21(20): 23822-23837.

[38] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 2016, 7: 12010.

[39] Aβmann M, Bayer M. Compressive adaptive computational ghost imaging[J]. Scientific Reports, 2013, 3: 1545.

[40] Phillips D B, Sun M J, Taylor J M, et al. Adaptive foveated single-pixel imaging with dynamic supersampling[J]. Science Advances, 2017, 3(4): e1601782.

[41] Bennink R S, Bentley S J, Boyd R W, et al. Quantum and classical coincidence imaging[J]. Physical Review Letters, 2004, 92(3): 033601.

[42] Zhang D, Zhai Y H, Wu L A, et al. Correlated two-photon imaging with true thermal light[J]. Optics Letters, 2005, 30(18): 2354-2356.

[43] 吴自文, 邱晓东, 陈理想. 关联成像技术研究现状及展望[J]. 激光与光电子学进展, 2020, 57(6): 060001.

    Wu Z W, Qiu X D, Chen L X. Current status and prospect for correlated imaging technique[J]. Laser & Optoelectronics Progress, 2020, 57(6): 060001.

[44] SunB, EdgarM P, BowmanR, et al. Differential computational ghost imaging[C]//Imaging and Applied Optics, June 23-27, 2013, Arlington, Virginia. Washington, D.C.: OSA, 2013: CTu1C.4. 10.1364/cosi.2013.ctu1c.4

[45] Sun M J, Xu Z H, Wu L G. Collective noise model for focal plane modulated single-pixel imaging[J]. Optics and Lasers in Engineering, 2018, 100: 18-22.

[46] McCarthy A, Collins R J, Krichel N J, et al. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting[J]. Applied Optics, 2009, 48(32): 6241-6251.

[47] Massa J S, Wallace A M, Buller G S, et al. Laser depth measurement based on time-correlated single-photon counting[J]. Optics Letters, 1997, 22(8): 543-545.

[48] McCarthy A, Krichel N J, Gemmell N R, et al. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection[J]. Optics Express, 2013, 21(7): 8904-8915.

[49] Nyquist H. Certain topics in telegraph transmission theory[J]. Transactions of the American Institute of Electrical Engineers, 1928, 47(2): 617-644.

[50] Shannon C E. Communication in the presence of noise[J]. Proceedings of the IRE, 1949, 37(1): 10-21.

[51] Ahmed N, Natarajan T, Rao K R. Discrete cosine transform[J]. IEEE Transactions on Computers, 1974, C-23(1): 90-93.

[52] Antonini M, Barlaud M, Mathieu P, et al. Image coding using wavelet transform[J]. IEEE Transactions on Image Processing, 1992, 1(2): 205-220.

[53] Wallace G K. The JPEG still picture compression standard[J]. IEEE Transactions on Consumer Electronics, 1992, 38(1): 4180430.

[54] Skodras A, Christopoulos C, Ebrahimi T. The JPEG 2000 still image compression standard[J]. IEEE Signal Processing Magazine, 2001, 18(5): 36-58.

[55] Sankaranarayanan A C, Xu L N, Studer C, et al. Video compressive sensing for spatial multiplexing cameras using motion-flow models[J]. SIAM Journal on Imaging Sciences, 2015, 8(3): 1489-1518.

[56] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 2019, 13(1): 13-20.

[57] Li C B, Yin W T, Jiang H, et al. An efficient augmented Lagrangian method with applications to total variation minimization[J]. Computational Optimization and Applications, 2013, 56(3): 507-530.

[58] Davenport M A, Wakin M B. Analysis of orthogonal matching pursuit using the restricted isometry property[J]. IEEE Transactions on Information Theory, 2010, 56(9): 4395-4401.

[59] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.

[60] Needell D, Vershynin R. Greedy signal recovery and uncertainty principles[J]. Proceedings of SPIE, 2008, 6814: 139-150.

[61] Needell D, Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301-321.

[62] Chen S S B, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1): 129-159.

[63] Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.

[64] Kim S J, Koh K, Lustig M, et al. An interior-point method for large-scale ℓ1-regularized least squares[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 606-617.

[65] Donoho D L, Tsaig Y. Fast solution of ℓ1-norm minimization problems when the solution may be sparse[J]. IEEE Transactions on Information Theory, 2008, 54(11): 4789-4812.

[66] Bioucas-Dias J M, Figueiredo M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004.

[67] Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.

[68] Bioucas-DiasJ M, FigueiredoM A T. Two-step algorithms for linear inverse problems with non-quadratic regularization[C]//2007 IEEE International Conference on Image Processing, September 16-October 19, 2007, San Antonio, TX, USA. New York: IEEE Press, 2007: I-105-I. 10.1109/icip.2007.4378902

[69] Becker S, Bobin J, Candès E J. NESTA: a fast and accurate first-order method for sparse recovery[J]. SIAM Journal on Imaging Sciences, 2011, 4(1): 1-39.

[70] YuanX. Generalized alternating projection based total variation minimization for compressive sensing[C]//2016 IEEE International Conference on Image Processing (ICIP), September 25-28, 2016, Phoenix, AZ, USA. New York: IEEE Press, 2016: 2539-2543. 10.1109/icip.2016.7532817

[71] Wahlberg B, Boyd S, Annergren M, et al. An ADMM algorithm for a class of total variation regularized estimation problems[J]. IFAC Proceedings Volumes, 2012, 45(16): 83-88.

[72] Candès E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9/10): 589-592.

[73] Baraniuk R, Davenport M, DeVore R, et al. A simple proof of the restricted isometry property for random matrices[J]. Constructive Approximation, 2008, 28(3): 253-263.

[74] Chen X H, Liu Q, Luo K H, et al. Lensless ghost imaging with true thermal light[J]. Optics Letters, 2009, 34(5): 695-697.

[75] Sun M J, Zhang J M. Single-pixel imaging and its application in three-dimensional reconstruction: a brief review[J]. Sensors, 2019, 19(3): 732.

[76] Pastuszczak A, Szczygieł B, Mikołajczyk M, et al. Efficient adaptation of complex-valued noiselet sensing matrices for compressed single-pixel imaging[J]. Applied Optics, 2016, 55(19): 5141-5148.

[77] Czajkowski K M, Czajkowski K M, Pastuszczak A, et al. Single-pixel imaging with Morlet wavelet correlated random patterns[J]. Scientific Reports, 2018, 8(1): 466.

[78] Wang L, Zhao S M. Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform[J]. Photonics Research, 2016, 4(6): 240-244.

[79] Zhang Z B, Wang X Y, Zheng G, et al. Hadamard single-pixel imaging versus Fourier single-pixel imaging[J]. Optics Express, 2017, 25(16): 19619-19639.

[80] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 2015, 6: 6225.

[81] Zhang Z B, Liu S J, Peng J Z, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements[J]. Optica, 2018, 5(3): 315-319.

[82] Czajkowski K M, Czajkowski K M, Pastuszczak A, et al. Real-time single-pixel video imaging with Fourier domain regularization[J]. Optics Express, 2018, 26(16): 20009-20022.

[83] Zhang Z B, Wang X Y, Zheng G A, et al. Fast Fourier single-pixel imaging via binary illumination[J]. Scientific Reports, 2017, 7(1): 12029.

[84] Yu W K, Li M F, Yao X R, et al. Adaptive compressive ghost imaging based on wavelet trees and sparse representation[J]. Optics Express, 2014, 22(6): 7133-7144.

[85] Rousset F, Ducros N, Farina A, et al. Adaptive basis scan by wavelet prediction for single-pixel imaging[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 36-46.

[86] 赵海潇, 郭岩, 李珮明, 等. 单像素成像信噪比分析及其在特殊波段的发展[J]. 激光与光电子学进展, 2021, 58(10): 1011010.

    Zhao H X, Guo Y, Li P M, et al. Investigation of single-pixel imaging in signal-to-noise ratio and its development at special wavelength[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011010.

[87] Yan S M, Sun M J, Chen W, et al. Illumination calibration for computational ghost imaging[J]. Photonics, 2021, 8(2): 59.

[88] Sun M J, Meng L T, Edgar M P, et al. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging[J]. Scientific Reports, 2017, 7(1): 3464.

[89] Yu W K. Super sub-nyquist single-pixel imaging by means of cake-cutting Hadamard basis sort[J]. Sensors, 2019, 19(19): 4122.

[90] Yu W K, Liu Y M. Single-pixel imaging with origami pattern construction[J]. Sensors, 2019, 19(23): 5135.

[91] Yu X, Stantchev R I, Yang F, et al. Super sub-Nyquist single-pixel imaging by total variation ascending ordering of the Hadamard basis[J]. Scientific Reports, 2020, 10(1): 9338.

[92] Yu X, Yang F, Gao B, et al. Deep compressive single pixel imaging by reordering Hadamard basis: a comparative study[J]. IEEE Access, 2020, 8: 55773-55784.

[93] Li L J, Chen W, Zhao X Y, et al. Fast optical phased array calibration technique for random phase modulation LiDAR[J]. IEEE Photonics Journal, 2019, 11(1): 1-10.

[94] Xu Z H, Chen W, Penuelas J, et al. 1000 fps computational ghost imaging using LED-based structured illumination[J]. Optics Express, 2018, 26(3): 2427-2434.

[95] Jiao S M, Sun M J, Gao Y, et al. Motion estimation and quality enhancement for a single image in dynamic single-pixel imaging[J]. Optics Express, 2019, 27(9): 12841-12854.

[96] 刘伟涛, 孙帅, 胡宏康, 等. 运动物体关联成像研究现状及展望[J]. 激光与光电子学进展, 2021, 58(10): 1011001.

    Liu W T, Sun S, Hu H K, et al. Progress and prospect for ghost imaging of moving objects[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011001.

[97] Sun M J, Edgar M P, Phillips D B, et al. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning[J]. Optics Express, 2016, 24(10): 10476-10485.

[98] Sun M J, Wang H Y, Huang J Y. Improving the performance of computational ghost imaging by using a quadrant detector and digital micro-scanning[J]. Scientific Reports, 2019, 9: 4105.

[99] Jordan M I, Mitchell T M. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.

[100] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.

[101] Schmidhuber J. Deep learning in neural networks: an overview[J]. Neural Networks, 2015, 61: 85-117.

[102] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.

[103] BottouL. Large-scale machine learning with stochastic gradient descent[M]//Lechevallier Y, Saporta G. Proceedings of COMPSTAT’2010. Heidelberg: Physica-Verlag HD, 2010: 177-186. 10.1007/978-3-7908-2604-3_16

[104] NairV, HintonG E. Rectified linear units improve restricted Boltzmann machines[C]//ICML 2010-Proceedings, 27th International Conference on Machine Learning, June 21-24, 2010, Haifa, Israel. Madison: Omnipress, 2010(3): 807-814.

[105] GlorotX, BordesA, BengioY. Deep sparse rectifier neural networks[C]//Proceedings of the fourteenth international conference on artificial intelligence and statistics, April 11-13, Fort Lauderdale, USA. Cambridge: JMLR, 2011: 315-323.

[106] Gibson G M, Johnson S D, Padgett M J. Single-pixel imaging 12 years on: a review[J]. Optics Express, 2020, 28(19): 28190-28208.

[107] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.

[108] HeK M, ZhangX Y, RenS Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE Press, 2016: 770-778. 10.1109/cvpr.2016.90

[109] He Y, Wang G, Dong G, et al. Ghost imaging based on deep learning[J]. Scientific Reports, 2018, 8(1): 6469.

[110] Lyu M, Wang W, Wang H, et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 2017, 7(1): 17865.

[111] Shimobaba T, Endo Y, Nishitsuji T, et al. Computational ghost imaging using deep learning[J]. Optics Communications, 2018, 413: 147-151.

[112] Wang F, Wang H, Wang H, et al. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging[J]. Optics Express, 2019, 27(18): 25560-25572.

[113] Higham C F, Murray-Smith R, Padgett M J, et al. Deep learning for real-time single-pixel video[J]. Scientific Reports, 2018, 8(1): 2369.

[114] Radwell N, Johnson S D, Edgar M P, et al. Deep learning optimized single-pixel LiDAR[J]. Applied Physics Letters, 2019, 115(23): 231101.

[115] Wang H, Bian L, Zhang J. Depth acquisition in single-pixel imaging with multiplexed illumination[J]. Optics Express, 2021, 29(4): 4866-4874.

[116] Zhang Z B, Li X, Zheng S J, et al. Image-free classification of fast-moving objects using “learned” structured illumination and single-pixel detection[J]. Optics Express, 2020, 28(9): 13269.

[117] Jiao S M, Feng J, Gao Y, et al. Optical machine learning with incoherent light and a single-pixel detector[J]. Optics Letters, 2019, 44(21): 5186-5189.

陈子阳, 陈丽, 范伟如, 卢腾飞, 沈少鑫, 蒲继雄. 基于相关全息原理的散射成像技术及其进展[J]. 激光与光电子学进展, 2021, 58(2): 0200001. Chen Ziyang, Chen Li, Fan Weiru, Lu Tengfei, Shen Shaoxin, Pu Jixiong. Progress on Scattering Imaging Technologies Based on Correlation Holography[J]. Laser & Optoelectronics Progress, 2021, 58(2): 0200001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!