激光与光电子学进展, 2021, 58 (3): 0300003, 网络出版: 2021-03-12   

新体制锁模光纤激光器及其放大压缩技术研究进展 下载: 952次

Research Progress of New Regime Mode?Locked Fiber Lasers and Amplification and Compression Technologies
作者单位
1 中国工程物理研究院激光聚变研究中心,四川 绵阳 621900
2 中国工程物理研究院研究生院,北京 100088
引用该论文

范孟秋, 夏汉定, 许党朋, 张锐, 郑万国. 新体制锁模光纤激光器及其放大压缩技术研究进展[J]. 激光与光电子学进展, 2021, 58(3): 0300003.

Fan Mengqiu, Xia Handing, Xu Dangpeng, Zhang Rui, Zheng Wanguo. Research Progress of New Regime Mode?Locked Fiber Lasers and Amplification and Compression Technologies[J]. Laser & Optoelectronics Progress, 2021, 58(3): 0300003.

参考文献

[1] Wise F W, Chong A, Renninger W H. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion[J]. Laser & Photonics Reviews, 2008, 2(1/2): 58-73.

[2] 余霞, 罗佳琪, 肖晓晟, 等. 高功率超快光纤激光器研究进展[J]. 中国激光, 2019, 46(5): 0508007.

    Yu X, Luo J Q, Xiao X S, et al. Research progress of high⁃power ultrafast fiber lasers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508007

[3] 张志刚. 飞秒激光技术[M]. 北京: 科学出版社, 2011.

    Zhang Z G. Femtosecond laser technology[M]. Beijing: Science Press, 2011.

[4] Fu W, Wright L G, Sidorenko P, et al. Several new directions for ultrafast fiber lasers[J]. Optics Express, 2018, 26(8): 9432-9463.

[5] Fermann M E, Hofer M, Haberl F, et al. Femtosecond fibre laser[J]. Electronics Letters, 1990, 26(20): 1737.

[6] Hofer M, Fermann M E, Haberl F, et al. Mode locking with cross-phase and self-phase modulation[J]. Optics Letters, 1991, 16(7): 502-504.

[7] Ober M H, Hofer M, Fermann M E. 42-fs pulse generation from a mode-locked fiber laser started with a moving mirror[J]. Optics Letters, 1993, 18(5): 367-369.

[8] Tamura K, Ippen E P, Haus H A, et al. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser[J]. Optics Letters, 1993, 18(13): 1080-1082.

[9] Nelson L E, Fleischer S B, Lenz G, et al. Efficient frequency doubling of a femtosecond fiber laser[J]. Optics Letters, 1996, 21(21): 1759-1761.

[10] Ilday F O, Buckley J R, Lim H, et al. Generation of 50-fs, 5-nJ pulses at 1.03 micrometre from a wave-breaking-free fiber laser[J]. Optics Letters, 2003, 28(15): 1365-1367.

[11] Ilday F O, Buckley J R, Clark W G, et al. Self-similar evolution of parabolic pulses in a laser[J]. Physical Review Letters, 2004, 92(21): 213902.

[12] Buckley J R, Wise F W, Ilday F O, et al. Femtosecond fiber lasers with pulse energies above 10 nJ[J]. Optics Letters, 2005, 30(14): 1888-1890.

[13] Ruehl A, Hundertmark H, Wandt D, et al. 0.7 W all-fiber erbium oscillator generating 64 fs wave breaking-free pulses[J]. Optics Express, 2005, 13(16): 6305-6309.

[14] Chong A, Buckley J, Renninger W, et al. All-normal-dispersion femtosecond fiber laser[J]. Optics Express, 2006, 14(21): 10095-10100.

[15] Tang D Y, Zhao L M. Generation of 47‍-‍fs pulses directly from an erbium‍-‍doped fiber laser[J]. Optics Letters, 2007, 32(1): 41-43.

[16] Chong A, Renninger W H, Wise F W. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ[J]. Optics Letters, 2007, 32(16): 2408-2410.

[17] Ruehl A, Kuhn V, Wandt D, et al. Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ[J]. Optics Express, 2008, 16(5): 3130-3135.

[18] Oktem B, Ülgüdür C, Ilday F Ö. Soliton-similariton fibre laser[J]. Nature Photonics, 2010, 4(5): 307-311.

[19] Renninger W H, Chong A, Wise F W. Self-similar pulse evolution in an all-normal-dispersion laser[J]. Physical Review A, 2010, 82(2): 021805.

[20] Nie B, Pestov D, Wise F W, et al. Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment[J]. Optics Express, 2011, 19(13): 12074-12080.

[21] Lan Y, Song Y J, Hu M L, et al. Enhanced spectral breathing for sub-25 fs pulse generation in a Yb-fiber laser[J]. Optics Letters, 2013, 38(8): 1292-1294.

[22] Samartsev I, Bordenyuk A, Gapontsev V. Environmentally stable seed source for high power ultrafast laser[J]. Proceedings of SPIE,2017, 10085: 100850S.

[23] Liu Z W, Ziegler Z M, Wright L G, et al. Megawatt peak power from a Mamyshev oscillator[J]. Optica, 2017, 4(6): 649.

[24] Mamyshev P V. All-optical data regeneration based on self-phase modulation effect[C]//24th European Conference on Optical Communication. ECOC '98

    IEEE Cat. No.98TH8398, September 20-24, 1998, Madrid, Spain. New York: IEEE Press, 1998: 475-476.

[25] Piche M. Mode locking through nonlinear frequency broadening and spectral filtering[J]. Proceedings of SPIE, 1994, 2041: 358-365.

[26] Sidorenko P, Fu W, Wright L G, et al. Self-seeded, multi-megawatt, Mamyshev oscillator[J]. Optics Letters, 2018, 43(11): 2672-2675.

[27] Liu W, Liao R Y, Zhao J, et al. Femtosecond Mamyshev oscillator with 10-MW-level peak power[J]. Optica, 2019, 6(2): 194-197.

[28] Ma C Y, Khanolkar A, Zang Y M, et al. Ultrabroadband, few-‍cycle pulses directly from a Mamyshev fiber oscillator[J]. Photonics Research, 2020, 8(1): 65-69.

[29] Olivier M, Boulanger V, Guilbert-Savary F, et al. Femtosecond fiber Mamyshev oscillator at 1550 nm[J]. Optics Letters, 2019, 44(4): 851-854.

[30] Wang P, Yao S, Grelu P, et al. Pattern formation in 2-μm Tm Mamyshev oscillators associated with the dissipative Faraday instability[J]. Photonics Research, 2019, 7(11): 1287-1295.

[31] Hao Q, Chen F H, Zeng H P. Compact all-PM-fiber Er-laser mode-locked by a phase-biased nonlinear amplifier loop mirror[C]//2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), July 31-August4, 2017, Singapore, Singapore. New York: IEEE Press, 2017: 1-2.

[32] Krzempek K, Sotor J, Abramski K. Compact all⁃fiber figure-9 dissipative soliton resonance mode-locked double-clad Er: Yb laser[J]. Optics Letters, 2016, 41(21): 4995-4998.

[33] Wang X F, Xia Q, Gu B. A 1.9 μm noise-like mode-locked fiber laser based on compact figure-9 resonator[J]. Optics Communications, 2019, 434: 180-183.

[34] Zhao K J, Wang P, Ding Y H, et al. High-energy dissipative soliton resonance and rectangular noise-like pulse in a figure-9 Tm fiber laser[J]. Applied Physics Express, 2019, 12(1): 012002.

[35] Zheng Z J, Ouyang D Q, Ren X K, et al. 0.33 mJ, 104.3 W dissipative soliton resonance based on a figure-of-9 double-clad Tm-doped oscillator and an all-fiber MOPA system[J]. Photonics Research, 2019, 7(5): 513-517.

[36] 周晓康, 宋有建, 廖若宇, 等. 改进的非线性放大环形镜锁模激光器研究[J]. 中国激光, 2015, 42(12): 1202002.

    Zhou X K, Song Y J, Liao R Y, et al. Research on modified nonlinear amplifying loop mirror mode-locked lasers[J]. Chinese Journal of Lasers, 2015, 42(12): 1202002.

[37] Jiang T X, Cui Y F, Lu P, et al. All PM fiber laser mode locked with a compact phase biased amplifier loop mirror[J]. IEEE Photonics Technology Letters, 2016, 28(16): 1786-1789.

[38] Chen F H, Hao Q, Zeng H P. Optimization of an NALM mode-locked all-PM Er: fiber laser system[J]. IEEE Photonics Technology Letters, 2017, 29(23): 2119-2122.

[39] Liu W, Shi H, Cui J, et al. Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror[J]. Optics Letters, 2018, 43(12): 2848-2851.

[40] Zhou J Q, Pan W W, Fu X H, et al. Environmentally-stable 50-fs pulse generation directly from an Er: fiber oscillator[J]. Optical Fiber Technology, 2019, 52: 101963.

[41] Wright L G, Christodoulides D N, Wise F W. Controllable spatiotemporal nonlinear effects in multimode fibres[J]. Nature Photonics, 2015, 9(5): 306-310.

[42] Wright L G, Christodoulides D N, Wise F W. Spatiotemporal mode-locking in multimode fiber lasers[J]. Science, 2017, 358(6359): 94-97.

[43] Wright L G, Renninger W H, Christodoulides D N, et al. Spatiotemporal dynamics of multimode optical solitons[J]. Optics Express, 2015, 23(3): 3492-3506.

[44] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867.

[45] 张志刚. 相干脉冲堆积: 超越啁啾脉冲放大的新技术[J]. 激光与光电子学进展, 2017, 54(12): 120001.

    Zhang Z G. Coherent pulse stacking: an innovation beyond the chirped pulse amplification[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120001.

[46] Klenke A, Müller M, Stark H, et al. Coherent beam combination of ultrafast fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-9.

[47] Müller M, Kienel M, Klenke A, et al. 1 kW 1mJ eight⁃channel ultrafast fiber laser[J]. Optics Letters, 2016, 41(15): 3439-3442.

[48] Huang L L, Hu M L, Fang X H, et al. Generation of 110-W sub-100-fs pulses at 100 MHz by nonlinear amplification based on multicore photonic crystal fiber[J]. IEEE Photonics Journal, 2016, 8(3): 7101307.

[49] Thielen P A, Ho J G, Burchman D A, et al. Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam[J]. Optics Letters, 2012, 37(18): 3741-3743.

[50] Zhou T, Sano T, Wilcox R. Coherent combination of ultrashort pulse beams using two diffractive optics[J]. Optics Letters, 2017, 42(21): 4422-4425.

[51] Zhou T, Du Q, Sano T, et al. Two-dimensional combination of eight ultrashort pulsed beams using a diffractive optic pair[J]. Optics Letters, 2018, 43(14): 3269-3272.

[52] Zhou S, Wise F W, Ouzounov D G. Divided-pulse amplification of ultrashort pulses[J]. Optics Letters, 2007, 32(7): 871-873.

[53] Kienel M, Muller M, Klenke A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 2016, 41(14): 3343-3346.

[54] Breitkopf S, Eidam T, Klenke A, et al. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities[J]. Light: Science & Applications, 2014, 3(10): e211.

[55] Zhou T, Ruppe J, Zhu C, et al. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers[J]. Optics Express, 2015, 23(6): 7442-7462.

[56] Zhou T, Ruppe J, Zhu C, et al. Coherent pulse stacking amplification using cascaded and multiplexed Gires-Tournois interferometers[C]//2015 Conference on Lasers and Electro-Optics (CLEO), May10-15, 2015, San Jose, CA, USA. New York: IEEE Press, 2015: 1-2.

[57] Hädrich S, Kienel M, Müller M, et al. Energetic sub-2-cycle laser with 216 W average power[J]. Optics Letters, 2016, 41(18): 4332-4335.

[58] Gebhardt M, Gaida C, Heuermann T, et al. Nonlinear pulse compression to 43 W GW-class few-cycle pulses at 2 μm wavelength[J]. Optics Letters, 2017, 42(20): 4179-4182.

[59] Nagy T, Hädrich S, Simon P, et al. Generation of three-cycle multi-‍millijoule laser pulses at 318 W average power[J]. Optica, 2019, 6(11): 1423-1424.

[60] 闫东钰, 刘博文, 宋寰宇, 等. 高功率光纤飞秒激光放大器的研究现状与发展趋势[J]. 中国激光, 2019, 46(5): 0508012.

    Yan D Y, Liu B W, Song H Y, et al. Research status and development trend of high power femtosecond fiber laser amplifiers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508012.

范孟秋, 夏汉定, 许党朋, 张锐, 郑万国. 新体制锁模光纤激光器及其放大压缩技术研究进展[J]. 激光与光电子学进展, 2021, 58(3): 0300003. Fan Mengqiu, Xia Handing, Xu Dangpeng, Zhang Rui, Zheng Wanguo. Research Progress of New Regime Mode?Locked Fiber Lasers and Amplification and Compression Technologies[J]. Laser & Optoelectronics Progress, 2021, 58(3): 0300003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!