Matter and Radiation at Extremes, 2016, 1 (4): 213, Published Online: May. 9, 2017   

Investigation of spherical and concentric mechanism of compound droplets

Author Affiliations
1 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China
2 School of Energy and Power Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
3 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing,Jiangsu, 210096, China
Copy Citation Text

Meifang Liu, Lin Su, Jie Li, Sufen Chen, Yiyang Liu, Jing Li, Bo Li, Yongping Chen, Zhanwen Zhang. Investigation of spherical and concentric mechanism of compound droplets[J]. Matter and Radiation at Extremes, 2016, 1(4): 213.

References

[1] A.M. Dunne, HiPER: Technical Background and Conceptual Design Report 2007, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Central Laser Facility, 2007.

[2] K. Nagai, H. Yang, T. Norimatsu, H. Azechi, F. Belkada, et al., Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the Fast Ignition Realization Experiment (FIREX) project, Nucl. Fusion 49 (2009) 095028.

[3] P.R. Paguio, S.P. Paguio, C.A. Frederick, A. Nikroo, O. Acenas, Improving the yield of target quality Omega size PAMS mandrels by modifying emulsion components, Fusion Sci. Technol. 49 (2006) 743-749.

[4] C. Lattaud, L. Guillot, C.-H. Brachais, E. Fleury, O. Legaie, et al., Influence of a density mismatch on TMPTMA shells nonconcentricity, J. Appl. Polym. Sci. 124 (2012) 4882-4888.

[5] A.K. Tucker-Schwartz, Z. Bei, R.L. Garrell, T.B. Jones, Polymerization of electric field-centered double emulsion droplets to create polyacrylate shells, Langmuir 26 (2010) 18606-18611.

[6] N. Antipa, S. Baxamusa, E. Buice, A. Conder, M. Emerich, et al., Automated ICF capsule characterization using confocal surface profilometry, Fusion Sci. Technol. 63 (2013) 151-159.

[7] G. Randall, B. Blue, Preventing droplet deformation during dielectrophoretic centering of a compound emulsion droplet, Bull. Am. Phys. Soc. 57 (2012).

[8] G. Randall, B. Blue, Continuous dielectrophoretic centering of compound droplets, in: APS Meeting Abstracts, 2012, 41014.

[9] R.C. Cook, P.M. Gresho, K.E. Hamilton, Examination of some droplet deformation forces related to NIF capsules sphericity, J. Mosc. Phys. Soc. 8 (1998) 221-226.

[10] S. Kumar, V. Ganvir, C. Satyanand, R. Kumar, K. Gandhi, Alternative mechanisms of drop breakup in stirred vessels, Chem. Eng. Sci. 53 (1998) 3269-3280.

[11] H. Ren, S. Xu, S.T. Wu, Effects of gravity on the shape of liquid droplets, Opt. Commun. 283 (2010) 3255-3258.

[12] X. Qu, Y.Wang, Dynamics of concentric and eccentric compound droplets suspended in extensional flows, Phys. Fluids 24 (2012) 123302-123321.

[13] D. Megias-Alguacil, Interfacial tension determination of liquid systems in which one of the phases is non-Newtonian using a rheo-optical method, Meas. Sci. Technol. 22 (2011) 037002.

[14] B.W. Mcquillan, A. Greenwood, Microencapsulation process factors which influence the sphericity of 1 mm o.d. poly(a-methystyrene) shells for ICF, Fusion Technol. 35 (1999) 194-197.

[15] M.F. Liu, S.F. Chen, X.B. Qi, B. Li, R.T. Shi, et al., Improvement of wall thickness uniformity of thick-walled polystyrene shells by density matching, Chem. Eng. J. 241 (2014) 466-476.

[16] B. Cook, M. Takagi, S. Buckley, E. Fearon, A. Hassel, Organic solvent choice, in: Mandrel Development Update e l/98 to 12/98, 1999.

[17] S.F. Chen, L. Su, Y.Y. Liu, B. Li, X.B. Qi, et al., Density match during fabrication process of poly(a-methylstyrene) mandrels by microencapsulation, High Power Laser Part. Beams 24 (2012) 1561-1565.

[18] H. Huang, R.B. Stephens, D.W. Hill, C. Lyon, A. Nikroo, et al., Automated batch characterization of ICF shells with vision-enabled optical microscope system, Fusion Sci. Technol. 45 (2004) 214-217.

[19] M.F. Liu, S.F. Chen, Y.Y. Liu, L. Su, R.T. Shi, et al., Characterization of sphericity and wall thickness uniformity of thick-walled hollow microspheres, High Power Laser Part. Beams 26 (2014) 153-157.

[20] T. Norimastu, Y. Izawa, K. Mima, P.M. Gresho, Modeling of the centering force in a compound emulsion to make uniform plastic shells for laser fusion targets, Fusion Technol. 35 (1999) 147-156.

[21] M. Takagi, R. Cook, R. Stephens, J. Gibson, S. Paguio, Stiffening of PaMS mandrels during curing, Fusion Technol. 38 (2000) 50-53.

[22] N.J. Alvarez, L.M. Walker, S.L. Anna, A microtensiometer to probe the effect of radius of curvature on surfactant transport to a spherical interface, Langmuir 26 (2010) 13310-13319.

[23] J. Jiao, D.J. Burgess, Multiple emulsion stability: pressure balance and interfacial film strength, in: Multiple Emulsions, John Wiley & Sons, Inc., 2008, pp. 1-27.

[24] P.B. Umbanhowar, V. Prasad, D.A. Weitz, Monodisperse emulsion generation via drop break off in a coflowing stream, Langmuir 16 (2000) 347-351.

[25] J.H. Xu, G.S. Luo, G.G. Chen, J.D. Wang, Experimental and theoretical approaches on droplet formation from a micrometer screen hole, J. Membr. Sci. 266 (2005) 121-131.

[26] J.H. Xu, S.W. Li, W.J. Lan, G.S. Luo, Microfluidic approach for rapid interfacial tension measurement, Langmuir 24 (2008) 11287-11292.

[27] G. De Luca, F.P. Di Maio, A. Di Renzo, E. Drioli, Droplet detachment in cross-flow membrane emulsification: comparison among torque- and force-based models, Chem. Eng. Process. Process Intensif. 47 (2008) 1150-1158.

[28] T.G. Wang, A. Anilkumar, C. Lee, K. Lin, Core-centering of compound drops in capillary oscillations: observations on USML-1 experiments in space, J. Colloid Interface Sci. 165 (1994) 19-30.

[29] A. Anilkumar, A. Hmelo, T. Wang, Core centering of immiscible compound drops in capillary oscillations: experimental observations, J. Colloid Interface Sci. 242 (2001) 465-469.

[30] B.W. McQuillan, R. Paguio, P. Subramanian, M. Takagi, A. Zebib, Hydrodynamic issues in PAMS mandrel target fabrication, in: Third International Conference on Inertial Fusion Sciences and Applications, Monterey, CA, 2003.

[31] J. Streit, D. Schroen, Developmet of divinylbenzene foam shells for use as inertial fusion energy reactor targets, Fusion Sci. Technol. 43 (2003) 321-326.

Meifang Liu, Lin Su, Jie Li, Sufen Chen, Yiyang Liu, Jing Li, Bo Li, Yongping Chen, Zhanwen Zhang. Investigation of spherical and concentric mechanism of compound droplets[J]. Matter and Radiation at Extremes, 2016, 1(4): 213.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!