Matter and Radiation at Extremes, 2019, 4 (1): 018401, Published Online: Nov. 14, 2019  

Progress and challenges in the fabrication of DPS shells for ICF

Author Affiliations
1 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
2 School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, China
Copy Citation Text

Meifang Liu, Yawen Huang, Sufen Chen, Dawei Pan, Miao Chen, Qiaomei Chu, Yiyang Liu, Qiang Yin, Zhanwen Zhang. Progress and challenges in the fabrication of DPS shells for ICF[J]. Matter and Radiation at Extremes, 2019, 4(1): 018401.

References

[1] H. Azechi, F. Belkada, Y. Fujimoto, T. Fujimura, K. Fujioka, S. Fujioka, H. Homma, K. Nagai, T. Norimatsu, H. Yang. Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the fast ignition realization experiment (FIREX) project. Nucl. Fusion, 2009, 49: 095028.

[2] K. Du, X. Luo, J. Xiao, L. Zhou. ‘Preparation of cone-shell target for fast ignition experiment,’ High Power Laser Part. Beams, 2005, 17: 1505-1508.

[3] L. Chen, Y. H. Chen, Z. Chen, Y. Ding, Z. Fan, X. T. He, W. Y. Huo, S. Jiang, W. Jiang, K. Lan, J. Liu, G. Ren, Q. Tang, F. Wang, J. Yan, Z. Yuan, W. Zhang, X. Zhang, J. Zheng. Neutron generation by laser-driven spherically convergent plasma fusion. Phys. Rev. Lett., 2017, 118: 165001.

[4] S. F. Chen, Q. M. Chu, B. Li, J. Li, J. Li, M. F. Liu, Y. Y. Liu, L. Su, Z. W. Zhang. Fabrication development of deuterated polymer shell used in fast ignition experiment. At. Energy Sci. Technol, 2017, 51: 380-384.

[5] S. Nakai, T. Norimatsu, M. Takagi, T. Yamanaka. Development of deuterated polystyrene shells for laser fusion by means of a density-matched emulsion method. J. Vacuum Sci. Technol. A, 1991, 9: 2145-2148.

[6] D. Z. Gao, Y. J. Tang, S. H. Wen, R. G. Xie, D. You, L. Zhang, Y. M. Zheng. Fabrication of deuterated solid ICF target. High Power Laser Part. Beams, 1999, 11: 605-608.

[7] T. Higuchi, T. Nisisako, S. Okushima, T. Torii. Controlled production of monodisperse double emulsions by two-Step droplet breakup in microfluidic devices. Langmuir, 2004, 20: 9905-9908.

[8] A. R. Abate, J. Thiele, D. A. Weitz. One-step formation of multiple emulsions in microfluidics. Lab Chip, 2011, 11: 253-258.

[9] G. Cristobal, M. Joanicot, D. R. Link, E. Lorenceau, A. S. Utada, D. A. Weitz. Generation of polymerosomes from double-emulsions. Langmuir, 2005, 21: 9183-9186.

[10] A. Fernández-Nieves, Z. Hu, J. W. Kim, A. S. Utada, D. A. Weitz. Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angew. Chem., 2007, 119: 1851-1854.

[11] P. D. Kaplan, D. R. Link, E. Lorenceau, H. A. Stone, A. S. Utada, D. A. Weitz. Monodisperse double emulsions generated from a microcapillary device. Science, 2005, 308: 537-541.

[12] A. Fernandez-Nieves, H. A. Stone, A. S. Utada, D. A. Weitz. Dripping to jetting transitions in coflowing liquid streams. Phys. Rev. Lett., 2007, 99: 094502.

[13] E. Amstad, L. R. Arriaga, D. A. Weitz. Scalable single-step microfluidic production of single-core double emulsions with ultra-thin shells. Lab Chip, 2015, 15: 3335-3340.

[14] Y. Cheng, L. Shang, Y. Zhao. Emerging droplet microfluidics. Chem. Rev., 2017, 117: 7964-8040.

[15] Y. W.Huang, M. F.Liu, X. N.Wei, Z. W.Zhang, X. J.Yang, and B.Li, A method of preparing deuterated polystyrene, 2016, ZL 201510917160.7.

[16] S. F. Chen, Y. P. Chen, B. Li, M. F. Liu, Y. Y. Liu, X. B. Qi, R. T. Shi, Z. W. Zhang. Improvement of wall thickness uniformity of thick-walled polystyrene shells by density matching. Chem. Eng. J., 2014, 241: 466-476.

[17] S. F. Chen, B. Li, J. Li, J. Li, M. F. Liu, Y. Y. Liu, Z. W. Zhang, Y. Q. Zheng. Effects of molecular weight of PVA on formation, stability and deformation of compound droplets for ICF polymer shells. Nucl. Fusion, 2017, 57: 016018.

[18] Y. Cheng, X. Feng, Y. Jin, T. Shao. Controlled production of double emulsions in dual-coaxial capillaries device for millimeter-scale hollow polymer spheres. Chem. Eng. Sci., 2013, 104: 55-63.

[19] S. Dong, D. Z. Gao, X. J. Ma, T. Sun, Y. J. Tang, L. Zhang, X. S. Zhao. Batch processing of geometric parameters and wall thickness distribution calculation of ICF capsule by X-ray imaging method. At. Energy Sci. Technol., 2012, 46: 487-492.

[20] R.Cook, M.Takagi, B.McQuillan, and R.Stephens, The development of plastic mandrels for NIF targets, ICF Semiannual Report UCRL-LR-105821-00-1, 2000.

[21] L. C. Brown, F. H. Elsner, B. W. McQuillan, R. B. Stephens. The use of CaCl2 and other salts to improve surface finish and eliminate vacuoles in ICF microencapsutlated shells. Fusion Technol., 1999, 35: 198-201.

[22] B. McQuillan, P. Subramanian, A. Zebib. Axisymmetric Marangoni convection in microencapsulation. Acta Astronautica, 2005, 57: 97-103.

[23] Q. Chen, S. F. Chen, W. X. Huang, B. Li, M. F. Liu, D. W. Pan, Z. Z. Zhang. Investigation of craze and cracks of polystyrene shells during drying process. Fusion Sci. Technol., 2018, 73: 59-67.

Meifang Liu, Yawen Huang, Sufen Chen, Dawei Pan, Miao Chen, Qiaomei Chu, Yiyang Liu, Qiang Yin, Zhanwen Zhang. Progress and challenges in the fabrication of DPS shells for ICF[J]. Matter and Radiation at Extremes, 2019, 4(1): 018401.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!