Photonics Research, 2020, 8 (12): 12001964, Published Online: Dec. 1, 2020   

Long-distance ranging with high precision using a soliton microcomb Download: 772次

Author Affiliations
1 State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
2 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China
5 e-mail: wwq@opt.ac.cn
6 e-mail: zhangfumin@tju.edu.cn
7 e-mail: wfuzhang@opt.ac.cn
Copy Citation Text

Jindong Wang, Zhizhou Lu, Weiqiang Wang, Fumin Zhang, Jiawei Chen, Yang Wang, Jihui Zheng, Sai T. Chu, Wei Zhao, Brent E. Little, Xinghua Qu, Wenfu Zhang. Long-distance ranging with high precision using a soliton microcomb[J]. Photonics Research, 2020, 8(12): 12001964.

References

[1] W. Cash, A. Shipley, S. Osterman, M. Joy. Laboratory detection of X-ray fringes with a grazing-incidence interferometer. Nature, 2000, 407: 160-162.

[2] N. White. X-ray astronomy—imaging black holes. Nature, 2000, 407: 146-147.

[3] M. Fridlund. Future space missions to search for terrestrial planets. Space Sci. Rev., 2008, 135: 355-369.

[4] S. G. Turyshev, M. Shao. Laser astrometric test of relativity: science, technology and mission design. Int. J. Mod. Phys. D, 2007, 16: 2191-2203.

[5] J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts. Large-scale nanophotonic phased array. Nature, 2013, 493: 195-199.

[6] I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury. Rapid and precise absolute distance measurements at long range. Nat. Photonics, 2009, 3: 351-356.

[7] W. T. Estler, K. L. Edmundson, G. N. Peggs, D. H. Parker. Large-scale metrology—an update. CIRP Ann. Manuf. Technol., 2002, 51: 587-609.

[8] N. Bobroff. Recent advances in displacement measuring interferometry. Meas. Sci. Technol., 1993, 4: 907-926.

[9] T. Udem, R. Holzwarth, T. W. Hansch. Optical frequency metrology. Nature, 2002, 416: 233-237.

[10] T. Udem, R. Holzwarth, T. Haensch. Femtosecond optical frequency combs. Eur. Phys. J. Spec. Top., 2009, 172: 69-79.

[11] K. Minoshima, H. Matsumoto. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt., 2000, 39: 5512-5517.

[12] D. Wei, S. Takahashi, K. Takamasu, H. Matsumoto. Time-of-flight method using multiple pulse train interference as a time recorder. Opt. Express, 2011, 19: 4881-4889.

[13] J. Takayanagi, H. Jinno, S. Ichino, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, K. Kawase. High-resolution time-of-flight terahertz tomography using a femtosecond fiber laser. Opt. Express, 2009, 17: 7533-7539.

[14] R. Yang, F. Pollinger, K. Meiners-Hagen, J. Tan, H. Bosse. Heterodyne multi-wavelength absolute interferometry based on a cavity-enhanced electro-optic frequency comb pair. Opt. Lett., 2014, 39: 5834-5837.

[15] N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, A. Abou-Zeid. Absolute distance measurement system using a femtosecond laser as a modulator. Meas. Sci. Technol., 2010, 21: 115302.

[16] G. Wu, M. Takahashi, H. Inaba, K. Minoshima. Pulse-to-pulse alignment technique based on synthetic-wavelength interferometry of optical frequency combs for distance measurement. Opt. Lett., 2013, 38: 2140-2143.

[17] M. Godbout, J. D. Deschenes, J. Genest. Spectrally resolved laser ranging with frequency combs. Opt. Express, 2010, 18: 15981-15989.

[18] K. N. Joo, S. W. Kim. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt. Express, 2006, 14: 5954-5960.

[19] M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach. Long distance measurement with femtosecond pulses using a dispersive interferometer. Opt. Express, 2011, 19: 6549-6562.

[20] S. A. van den Berg, S. van Eldik, N. Bhattacharya. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement. Sci. Rep., 2015, 5: 14661.

[21] K. N. Joo, S. W. Kim. Refractive index measurement by spectrally resolved interferometry using a femtosecond pulse laser. Opt. Lett., 2007, 32: 647-649.

[22] V. Duran, P. A. Andrekson, V. Torres-Company. Electro-optic dual-comb interferometry over 40 nm bandwidth. Opt. Lett., 2016, 41: 4190-4193.

[23] G. Wu, S. Xiong, K. Ni, Z. Zhu, Q. Zhou. Parameter optimization of a dual-comb ranging system by using a numerical simulation method. Opt. Express, 2015, 23: 32044-32053.

[24] Z. Zhu, G. Wu. Dual-comb ranging. Engineering, 2018, 4: 772-778.

[25] K. N. Joo, Y. Kim, S. W. Kim. Distance measurements by combined method based on a femtosecond pulse laser. Opt. Express, 2008, 16: 19799-19806.

[26] J. Wang, X. Qu, F. Zhang, J. Chen. Review of dispersive interferometry ranging with optical frequency comb and the instrumentation prospect. Proc. SPIE, 2020, 11437: 114370A.

[27] H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, X. Qu. Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser. Meas. Sci. Technol., 2016, 27: 015202.

[28] X. Zhao, X. Qu, F. Zhang, Y. Zhao, G. Tang. Absolute distance measurement by multi-heterodyne interferometry using an electro-optic triple comb. Opt. Lett., 2018, 43: 807-810.

[29] Y. Zhou, Y.-X. Ren, J. Shi, K. K. Y. Wong. Breathing dissipative soliton explosions in a bidirectional ultrafast fiber laser. Photon. Res., 2020, 8: 1566-1572.

[30] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, T. J. Kippenberg. Temporal solitons in optical microresonators. Nat. Photonics, 2014, 8: 145-152.

[31] Y. Lyu, H. Shi, C. Wei, H. Li, J. Li, Y. Liu. Harmonic dissipative soliton resonance pulses in a fiber ring laser at different values of anomalous dispersion. Photon. Res., 2017, 5: 611-612.

[32] J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, S. Ruan. High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber. Photon. Res., 2018, 6: 535-541.

[33] M. Liu, T.-J. Li, A.-P. Luo, W.-C. Xu, Z.-C. Luo. ‘Periodic’ soliton explosions in a dual-wavelength mode-locked Yb-doped fiber laser. Photon. Res., 2020, 8: 246-251.

[34] X. Xue, X. Zheng, B. Zhou. Soliton regulation in microcavities induced by fundamental-second-harmonic mode coupling. Photon. Res., 2018, 6: 948-953.

[35] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 2011, 332: 555-559.

[36] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, C. Koos. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 2017, 546: 274-279.

[37] F. X. Wang, W. Wang, R. Niu, X. Wang, C. L. Zou, C. H. Dong, B. E. Little, S. T. Chu, H. Liu, P. Hao, S. Liu, S. Wang, Z. Q. Yin, D. Y. He, W. Zhang, W. Zhao, Z. F. Han, G. C. Guo, W. Chen. Quantum key distribution with on-chip dissipative Kerr soliton. Laser Photon. Rev., 2020, 14: 1900190.

[38] M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, K. J. Vahala. Microresonator soliton dual-comb spectroscopy. Science, 2016, 354: 600-603.

[39] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M. G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, S. B. Papp. An optical-frequency synthesizer using integrated photonics. Nature, 2018, 557: 81-87.

[40] P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, C. Koos. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 2018, 359: 887-891.

[41] M. G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 2018, 359: 884-887.

[42] Z. Lu, W. Wang, W. Zhang, S. T. Chu, B. E. Little, M. Liu, L. Wang, C. L. Zou, C. H. Dong, B. Zhao, W. Zhao. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator. AIP Adv., 2019, 9: 025314.

[43] W. Wang, Z. Lu, W. Zhang, S. T. Chu, B. E. Little, L. Wang, X. Xie, M. Liu, Q. Yang, L. Wang, J. Zhao, G. Wang, Q. Sun, Y. Liu, Y. Wang, W. Zhao. Robust soliton crystals in a thermally controlled microresonator. Opt. Lett., 2018, 43: 2002-2005.

[44] J. W. Chen, J. D. Wang, X. H. Qu, F. M. Zhang. Analysis of main parameters of spectral interferometry ranging using optical frequency comb and an improved data processing method. Acta Phys. Sinica, 2019, 68: 190602.

[45] J. Wang, T. Huang, F. Duan, Q. Cheng, F. Zhang, X. Qu. Fast peak-tracking method for FBG reflection spectrum and nonlinear error compensation. Opt. Lett., 2020, 45: 451-454.

[46] P. Liao, C. Bao, A. Kordts, M. Karpov, M. H. P. Pfeiffer, L. Zhang, A. Mohajerin-Ariaei, Y. Cao, A. Almaiman, M. Ziyadi, S. R. Wilkinson, M. Tur, T. J. Kippenberg, A. E. Willner. Dependence of a microresonator Kerr frequency comb on the pump linewidth. Opt. Lett., 2017, 42: 779-782.

Jindong Wang, Zhizhou Lu, Weiqiang Wang, Fumin Zhang, Jiawei Chen, Yang Wang, Jihui Zheng, Sai T. Chu, Wei Zhao, Brent E. Little, Xinghua Qu, Wenfu Zhang. Long-distance ranging with high precision using a soliton microcomb[J]. Photonics Research, 2020, 8(12): 12001964.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!