Photonics Research, 2021, 9 (1): 01000027, Published Online: Apr. 1, 2021   

Dual-band perfect absorber for a mid-infrared photodetector based on a dielectric metal metasurface Download: 756次

Author Affiliations
1 Nanophotonics and Optoelectronics Research Center, Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
2 e-mail: xiaolin@qxslab.cn
Copy Citation Text

Zhao Chen, Yudong Weng, Junku Liu, Nan Guo, Yaolun Yu, Lin Xiao. Dual-band perfect absorber for a mid-infrared photodetector based on a dielectric metal metasurface[J]. Photonics Research, 2021, 9(1): 01000027.

References

[1] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998, 391: 667-669.

[2] F. J. García-Vidal, E. Moreno, J. A. Porto, L. Martín-Moreno. Transmission of light through a single rectangular hole. Phys. Rev. Lett., 2005, 95: 103901.

[3] Z. Ruan, M. Qiu. Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys. Rev. Lett., 2006, 96: 233901.

[4] Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, H. Li. Polarization-controlled dynamically switchable plasmon induced transparency in plasmonic metamaterial. Nanoscale, 2018, 10: 19517-19523.

[5] Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Znag, T. Zhang, Y. Gu, Q. Gong. Blue-detuned optical atom trapping in a compact plasmonic structure. Photon. Res., 2017, 5: 436-440.

[6] S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett., 2008, 101: 047401.

[7] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett., 2008, 100: 207402.

[8] X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett., 2011, 107: 045901.

[9] TongX. C., Functional Metamaterials and Metadevices (Springer, 2018).

[10] Y. He, K. Lawrence, W. Lngram, Y. Zhao. Circular dichroism based refractive index sensing using chiral metamaterials. Chem. Commun., 2016, 52: 2047-2050.

[11] W. Wang, F. Yan, S. Tan, H. Zhou, Y. Hou. Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators. Photon. Res., 2017, 5: 571-577.

[12] Y. Zhao, A. Alu. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys. Rev. B, 2011, 84: 205428.

[13] Y. Zhao, M. Belkin, A. Alu. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun., 2012, 3: 870.

[14] R. Ji, S. Wang, X. Liu, X. Chen, W. Li. Broadband circular polarizers constructed using helix-like chiral metamaterials. Nanoscale, 2016, 8: 14725-14729.

[15] A. K. Mikhail, C. Federico. Optical absorbers based on strong interference in ultra-thin films. Laser Photon. Rev., 2016, 10: 735-749.

[16] Z. Li, S. Butun, K. Aydin. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photon., 2015, 2: 183-188.

[17] J. Zhao, X. Yu, X. Yang, C. Augustine, W. Yuan, Y. Yu. Polarization-independent and high-efficiency broadband optical absorber in visible light based on nanostructured germanium arrays. Opt. Lett., 2019, 44: 963-966.

[18] Z. Li, W. Liu, H. Cheng, D. Choi, S. Chen, J. Tian. Spin-selective full-dimensional manipulation of optical waves with chiral mirror. Adv. Mater., 2020, 32: 1907983.

[19] I. Ozbay, A. Ghobadi, B. Butun, G. Turhan-Sayan. Bismuth plasmonics for extraordinary light absorption in deep sub-wavelength geometries. Opt. Lett., 2020, 45: 686-689.

[20] X. Liu, T. Starr, A. F. Starr, W. J. Padilla. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett., 2010, 104: 207403.

[21] C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, G. Shvets. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J. Opt., 2012, 14: 024005.

[22] K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun., 2011, 2: 517.

[23] J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, S.-G. Kim. Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals. Adv. Mater., 2014, 26: 8041-8045.

[24] Y. Zhang, D. Meng, X. Li, H. Yu, J. Lai, Z. Fan, C. Chen. Significantly enhanced infrared absorption of graphene photodetector under surface-plasmonic coupling and polariton interference. Opt. Express, 2018, 26: 30862-30872.

[25] A. Safaei, S. Chandra, M. W. Shabbir, M. N. Leuenberger, D. Chanda. Dirac plasmon-assisted asymmetric hot carrier generation for room-temperature infrared detection. Nat. Commun., 2019, 10: 3498.

[26] T. D. Dao, S. Ishii, A. T. Doan, Y. Wada, A. Ohi, T. Nabatame, T. Nagao. An on-chip quad-wavelength pyroelectric sensor for spectroscopic infrared sensing. Adv. Sci., 2019, 6: 1900579.

[27] Z. Taghipour, S. Lee, S. A. Myers, E. H. Steenbergen, C. P. Morath, V. M. Cowan, S. Mathews, G. Balakrishnan, S. Krishna. Temperature-dependent minority-carrier mobility in p-type InAs/GaSb type-II-superlattice photodetectors. Phys. Rev. Appl., 2019, 11: 024047.

[28] T. D. Nguyen, J. O. Kim, Y. H. Kim, E. T. Kim, Q. L. Nguyen, S. J. Lee. Dual-color short-wavelength infrared photodetector based on InGaAsSb/GaSb heterostructure. AIP Adv., 2018, 8: 025015.

[29] S. Liu, M. Li, J. Zhang, D. Su, Z. Huang, S. Kunwar, J. Lee. Self-assembled Al nanostructure/ZnO quantum dot heterostructures for high responsivity and fast UV photodetector. Nano-Micro Lett., 2020, 12: 114.

[30] Y. F. Xiong, J. H. Chen, Y. Q. Lu, F. Xu. Broadband optical-fiber-compatible photodetector based on a graphene-MoS2-WS2 heterostructure with a synergetic photogenerating mechanism. Adv. Electron. Mater., 2019, 5: 1800562.

[31] J. Yao, G. Yang. 2D material broadband photodetectors. Nanoscale, 2020, 12: 454-476.

[32] L. Ye, P. Wang, W. Luo, F. Gong, L. Liao, T. Liu, L. Tong, J. Zang, J. Xu, W. Hu. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy, 2017, 37: 53-60.

[33] M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas. Photodetection with active optical antennas. Science, 2011, 332: 702-704.

[34] W. Li, J. Valentine. Metamaterial perfect absorber based hot electron photo detection. Nano Lett., 2014, 14: 3510-3514.

[35] Y. Ho, Y. Tai, J. K. Clark, Z. Wang, P. Wei, J. Delaunay. Plasmonic hot-carriers in channel-coupled nanogap structure for metal-semiconductor barrier modulation and spectral-selective plasmonic monitoring. ACS Photon., 2018, 5: 2617-2623.

[36] T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, T. Nagao. Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers. ACS Photon., 2015, 2: 964-970.

[37] S. Kang, Z. Qian, V. Rajaram, S. D. Calisgan, A. Alu, M. Rinaldi. Ultra-narrowband metamaterial absorbers for high spectral resolution infrared spectroscopy. Adv. Opt. Mater., 2019, 7: 1801236.

[38] J. Park, J. Kang, S. J. Kim, X. Liu, M. L. Brongersma. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett., 2017, 17: 407-413.

[39] S. Chen, Z. Chen, J. Liu, J. Cheng, Y. Zhou, L. Xiao, K. Chen. Ultra-narrow band mid-infrared perfect absorber based on hybrid dielectric metasurface. Nanomaterials, 2019, 9: 1350.

[40] G. Lan, Z. Jin, J. Nong, P. Luo, C. Guo, Z. Sang, L. Dong, W. Wei. Narrowband perfect absorber based on dielectric-metal metasurface for surface-enhanced infrared sensing. Appl. Sci., 2020, 10: 2295.

[41] J. Hao, L. Zhou, M. Qiu. Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys. Rev. B, 2011, 83: 165107.

[42] F. Callewaert, S. Chen, S. Butun, K. Aydin. Narrow band absorber based on a dielectric nanodisk array on silver film. J. Opt., 2016, 18: 075006.

[43] GriffithsD. J., Introduction to Electrodynamics (Prentice Hall, 1999).

[44] J. W. Stewart, J. H. Vella, W. Li, S. Fan, M. H. Mikkelsen. Ultrafast pyroelectric photodetection with on-chip spectral filters. Nat. Mater., 2020, 19: 158-162.

[45] W. S. Yan, R. Zhang, X. Q. Xiu, Z. L. Xie, P. Han, R. L. Jiang, S. L. Gu, Y. Shi, Y. D. Zheng. Temperature dependence of the pyroelectric coefficient and the spontaneous polarization of AlN. Appl. Phys. Lett., 2007, 90: 212102.

[46] K. W. Mauser, S. Kim, S. Mitrovic, D. Fleischman, R. Pala, K. C. Schwab, H. A. Atwater. Resonant thermoelectric nanophotonics. Nat. Nanotechnol., 2017, 12: 770-775.

[47] L. Liu, X. Zhang, Z. Zhao, M. Pu, P. Gao, Y. Luo, J. Jin, C. Wang, X. Luo. Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography. Adv. Opt. Mater., 2017, 5: 1700429.

Zhao Chen, Yudong Weng, Junku Liu, Nan Guo, Yaolun Yu, Lin Xiao. Dual-band perfect absorber for a mid-infrared photodetector based on a dielectric metal metasurface[J]. Photonics Research, 2021, 9(1): 01000027.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!