Photonics Research, 2021, 9 (2): 02000125, Published Online: Jan. 22, 2021  

Resonant transparency of a planar anapole metamaterial at terahertz frequencies Download: 1014次

Author Affiliations
Centre for THz Research, China Jiliang University, Hangzhou 310018, China
Copy Citation Text

Xiangjun Li, Jie Yin, Jianjun Liu, Fangzhou Shu, Tingting Lang, Xufeng Jing, Zhi Hong. Resonant transparency of a planar anapole metamaterial at terahertz frequencies[J]. Photonics Research, 2021, 9(2): 02000125.

References

[1] R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction. Science, 2001, 292: 77-79.

[2] T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, X. Zhang. Terahertz magnetic response from artificial materials. Science, 2004, 303: 1494-1496.

[3] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314: 977-980.

[4] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352: 1190-1194.

[5] N. I. Zheludev, Y. S. Kivshar. From metamaterials to metadevices. Nat. Mater., 2012, 11: 917-924.

[6] V. M. Dubovik, V. V. Tugushev. Toroid moments in electrodynamics and solid-state physics. Phys. Rep., 1990, 187: 145-202.

[7] I. B. Zel’Dovich. The relation between decay asymmetry and dipole moment of elementary particles. Sov. Phys. JETP, 1958, 6: 1148-1155.

[8] N. Talebia, S. Guoa, P. A. van Aken. Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance. Nanophotonics, 2018, 7: 93-110.

[9] N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, N. I. Zheludev. Electromagnetic toroidal excitations in matter and free space. Nat. Mater., 2016, 15: 263-271.

[10] T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, N. I. Zheludev. Toroidal dipolar response in a metamaterial. Science, 2010, 330: 1510-1512.

[11] Z. Dong, P. Ni, J. Zhu, X. Yin, X. Zhang. Toroidal dipole response in a multifold double-ring metamaterial. Opt. Express, 2012, 20: 13065-13070.

[12] T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, N. I. Zheludev. Toroidal circular dichroism. Phys. Rev. B, 2016, 94: 035119.

[13] Y. Fan, Z. Wei, H. Li, H. Chen, C. M. Soukoulis. Low-loss and high-Q planar metamaterial with toroidal moment. Phys. Rev. B, 2013, 87: 115417.

[14] L. Cong, Y. K. Srivastava, R. Singh. Tailoring the multipoles in THz toroidal metamaterials. Appl. Phys. Lett., 2017, 111: 081108.

[15] M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, R. Singh. Sharp toroidal resonances in planar terahertz metasurfaces. Adv. Mater., 2016, 28: 8206-8211.

[16] B. Han, X. Li, C. Sui, J. Diao, X. Jing, Z. Hong. Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response. Opt. Mater. Express, 2018, 8: 2197-2207.

[17] Y. W. Huang, W. T. Chen, P. C. Wu, V. A. Fedotov, V. Savino, Y. Z. Ho, Y. F. Chau, N. I. Zheludev, D. P. Tsai. Design of plasmonic toroidal metamaterials at optical frequencies. Opt. Express, 2012, 20: 1760-1768.

[18] B. Oeguet, N. Talebi, R. Vogelgesang, W. Sigle, P. A. van Aken. Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. Nano Lett., 2012, 12: 5239-5244.

[19] F. Y. He, B. X. Han, X. J. Li, T. T. Lang, X. F. Jing, Z. Hong. Analogue of electromagnetically induced transparency with high-Q factor in metal-dielectric metamaterials based on bright-bright mode coupling. Opt. Express, 2019, 27: 37590-37600.

[20] L. Guo, M. Li, X. Huang, H. Yang. Electric toroidal metamaterial for resonant transparency and circular cross-polarization conversion. Appl. Phys. Lett., 2014, 105: 033507.

[21] K. Marinov, A. D. Boardman, V. A. Fedotov, N. I. Zheludev. Toroidal metamaterial. New J. Phys., 2007, 9: 324.

[22] Y. He, G. T. Guo, T. H. Feng, Y. Xu, A. E. Miroshnichenko. Toroidal dipole bound states in the continuum. Phys. Rev. B, 2018, 98: 161112.

[23] S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, R. Singh. All-dielectric active terahertz photonics driven by bound states in the continuum. Adv. Mater., 2019, 31: 1901921.

[24] X. F. Wang, S. Y. Li, C. B. Zhou. Polarization-independent toroidal dipole resonances driven by symmetry-protected BIC in ultraviolet region. Opt. Express, 2020, 28: 11983-11989.

[25] X. Luo, X. J. Li, T. T. Lang, X. F. Jing, Z. Hong. Excitation of high Q toroidal dipole resonance in an all-dielectric metasurface. Opt. Mater. Express, 2020, 10: 358-368.

[26] K. V. Baryshnikova, D. A. Smirnova, B. S. Luk’Yanchuk, Y. S. Kivshar. Optical anapoles: concepts and applications. Adv. Opt. Mater., 2019, 7: 1801350.

[27] A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. S. Luk’Yanchuk, B. N. Chichkov, Y. S. Kivshar. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun., 2015, 6: 8069.

[28] V. Savinov, N. Papasimakis, D. P. Tsai, N. I. Zheludev. Optical anapoles. Commun. Phys., 2019, 2: 69.

[29] E. A. Gurvitz, K. S. Ladutenko, P. A. Dergachev, A. B. Evlyukhin, A. E. Miroshnichenko, A. S. Shalin. The high-order toroidal moments and anapole states in all-dielectric photonics. Laser Photon. Rev., 2019, 13: 1800266.

[30] N. A. Nemkov, A. A. Basharin, V. A. Fedotov. Electromagnetic sources beyond common multipoles. Phys. Rev. A, 2018, 98: 023858.

[31] L. Wei, Z. Xi, N. Bhattacharya, H. P. Urbach. Excitation of the radiationless anapole mode. Optica, 2016, 3: 799-802.

[32] W. Liu, J. Zhang, B. Lei, H. Hu, A. E. Miroshnichenko. Invisible nanowires with interfering electric and toroidal dipoles. Opt. Lett., 2015, 40: 2293-2296.

[33] A. K. Ospanova, G. Labate, L. Matekovits, A. A. Basharin. Multipolar passive cloaking by nonradiating anapole excitation. Sci. Rep., 2018, 8: 12514.

[34] G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, S. A. Maier. Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk. ACS Nano, 2017, 11: 953-960.

[35] T. Shibanuma, G. Grinblat, P. Albella, S. A. Maier. Efficient third harmonic generation from metal-dielectric hybrid nanoantennas. Nano Lett., 2017, 17: 2647-2651.

[36] V. F. Gili, L. Ghirardini, D. Rocco, G. Marino, I. Favero, I. Roland, G. Pellegrini, L. Duo, M. Finazzi, L. Carletti, A. Locatelli, A. Lemaitre, D. Neshev, C. D. Angelis, G. Leo, M. Celebrano. Metal-dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode. Beilstein J. Nanotech., 2018, 9: 2306-2314.

[37] J. S. T. Gongora, A. E. Miroshnichenko, Y. S. Kivshar, A. Fratalocchi. Anapole nanolasers for mode-locking and ultrafast pulse generation. Nat. Commun., 2017, 8: 15535.

[38] D. G. Baranov, R. Verre, P. Karpinski, M. Käll. Anapole-enhanced intrinsic Raman scattered from silicon nanodisks. ACS Photon., 2018, 5: 2730-2736.

[39] V. A. Fedotov, A. V. Rogacheva, V. Savinov, D. P. Tsai, N. I. Zheludev. Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials. Sci. Rep., 2013, 3: 2967.

[40] P. C. Wu, C. Y. Liao, V. Savinov, T. L. Chung, W. T. Chen, Y. W. Huang, P. R. Wu, Y. H. Chen, A. Q. Liu, N. I. Zheludev, D. P. Tsai. Optical anapole metamaterial. ACS Nano, 2018, 12: 1920-1927.

[41] A. A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, E. N. Economou. Extremely high Q-factor metamaterials due to anapole excitation. Phys. Rev. B, 2017, 95: 035104.

[42] S. Han, M. Gupta, L. Cong, Y. K. Srivastava, R. Singh. Toroidal and magnetic Fano resonances in planar THz metamaterials. J. Appl. Phys., 2017, 122: 113105.

[43] M. Gupta, R. Singh. Toroidal versus Fano resonances in high Q planar THz metamaterials. Adv. Opt. Mater., 2016, 4: 2119-2125.

[44] X. Liu, Z. Liu, M. Hua, L. Wang, F. Yang. Tunable terahertz metamaterials based on anapole excitation with graphene for reconfigurable sensors. ACS Appl. Nano Mater., 2020, 3: 2129-2133.

[45] M. V. Cojocari, K. I. Schegoleva, A. A. Basharin. Blueshift and phase tunability in planar THz metamaterials: the role of losses and toroidal dipole contribution. Opt. Lett., 2017, 42: 1700-1703.

[46] A. K. Ospanova, I. V. Stenishchev, A. A. Basharin. Anapole mode sustaining silicon metamaterials in visible spectral range. Laser Photon. Rev., 2018, 12: 1800005.

[47] S. Liu, Z. Wang, W. Wang, J. Chen, Z. Chen. High Q-factor with the excitation of anapole modes in dielectric split nanodisk arrays. Opt. Express, 2017, 25: 22375-22387.

[48] J. F. Algorri, D. C. Zografopoulos, A. Ferraro, B. G. Camara, R. Beccherelli, J. M. Sanchez-Pena. Ultrahigh-quality factor resonant dielectric metasurfaces based on hollow nanocuboids. Opt. Express, 2019, 27: 6320-6330.

[49] R. Wang, L. Dal Negro. Engineering non-radiative anapole modes for broadband absorption enhancement of light. Opt. Express, 2016, 24: 19048-19062.

[50] V. Savinov, V. A. Fedotov, N. I. Zheludev. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials. Phys. Rev. B, 2014, 89: 205112.

[51] A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, N. I. Zheludev. Dielectric metamaterials with toroidal dipolar response. Phys. Rev. X, 2015, 5: 011036.

[52] E. E. Radescu, G. Vaman. Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles. Phys. Rev. E, 2002, 65: 046609.

Xiangjun Li, Jie Yin, Jianjun Liu, Fangzhou Shu, Tingting Lang, Xufeng Jing, Zhi Hong. Resonant transparency of a planar anapole metamaterial at terahertz frequencies[J]. Photonics Research, 2021, 9(2): 02000125.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!