强激光与粒子束, 2020, 32 (12): 121003, 网络出版: 2021-01-06   

光纤激光模式不稳定研究十年回顾与展望 下载: 1006次

Ten-year review and prospect on mode instability research of fiber lasers
作者单位
中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
引用该论文

王建军, 刘玙, 李敏, 冯曦, 楚秋慧, 张春, 高聪, 陶汝茂, 林宏奂, 景峰. 光纤激光模式不稳定研究十年回顾与展望[J]. 强激光与粒子束, 2020, 32(12): 121003.

Jianjun Wang, Yu Liu, Min Li, Xi Feng, Qiuhui Chu, Chun Zhang, Cong Gao, Rumao Tao, Honghuan Lin, Feng Jing. Ten-year review and prospect on mode instability research of fiber lasers[J]. High Power Laser and Particle Beams, 2020, 32(12): 121003.

参考文献

[1] Snitzer E. Proposed fiber cavities for optical masers[J]. J Appl Phys, 1961, 32: 36-39.

[2] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. J Opt Soc Am B, 2010, 27(11): 63-92.

[3] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nat Photonics, 2013, 7: 258-261.

[4] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nat Photonics, 2013, 7: 861-867.

[5] Zervas M N, Codemard C A. High power fiber lasers: A review[J]. IEEE J Sel Top Quantum Electron, 2014, 20(11): 219-241.

[6] Shi W, Fang Q, Zhu X, et al. Fiber lasers and their applications[J]. Appl Opt, 2014, 53: 6554-6568.

[7] 杨昌盛, 徐善辉, 周军, 等. 大功率光纤激光材料与器件关键技术研究进展[J]. 中国科学: 技术科学, 2017, 47:1038-1048. (Yang Changsheng, Xu Shanhui, Zhou Jun, et al. Research advance on the key technology of high-power fiber laser materials and components[J]. Scientia Sinica Technologica, 2017, 47: 1038-1048

[8] Liu Z J, Jin X X, Su R T, et al. Development status of high power fiber lasers and their coherent beam combination[J]. Science China: Information Science, 2019, 62: 041301.

[9] Stiles E. New developments in IPG fiber laser technology[C]Proc 5th Int Wkshop Fiber Lasers. 2009.

[10] Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Opt Lett, 2010, 35: 94-96.

[11] Shiner B. The impact of fiber laser technology on the wld wide material processing market[C]Proc Conf Lasers ElectroOpt. 2013: AF2J.1.

[12] 林宏奂, 唐选, 李成钰, 等. 全国产单纤激光系统获得10.6 kW激光输出[J]. 中国激光, 2018, 45:0315001. (Lin Honghuan, Tang Xuan, Li Chengyu, et al. 10.6 kW laser from totally-domestic fiber laser systems[J]. Chinese Journal of Laser, 2018, 45: 0315001

[13] 林傲祥, 湛欢, 彭昆, 等. 国产复合功能光纤实现万瓦激光输出[J]. 强激光与粒子束, 2018, 30:060101. (Lin Aoxiang, Zhan Huan, Peng Kun, et al. 10 kW-level pump-gain integrated functional laser fiber[J]. High Power Laser and Particle Beams, 2018, 30: 060101

[14] 高聪, 代江云, 李峰云, 等. 自研万瓦级同带泵浦掺镱石英玻璃光纤[J]. 中国激光, 2020, 47:0315001. (Gao Cong, Dai Jiangyun, Li Fengyun, et al. Homemade 10-kW ytterbium-doped aluminophosphosilicate fiber for tandem pumping[J]. Chinese Journal of Laser, 2020, 47: 0315001

[15] 陈晓龙, 楼风光, 何宇, 等. 高效率全国产化10 kW光纤激光器[J]. 光学学报, 2019, 39:0336001. (Chen Xiaolong, Lou Fengguang, He Yu, et al. Home-made 10-kW fiber laser with high efficiency[J]. Acta Optica Sinica, 2019, 39: 0336001

[16] Fang Q, Li J, Shi W, et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes[J]. IEEE Photonics J, 2017, 9: 1506107.

[17] Möller F, Krämer R, Matzdf C, et al. MultikW perfmance analysis of Ybdoped monolithic singlemode amplifier oscillat setup[C]Proc of SPIE. 2019: 108970D.

[18] Ye Y, Xi X, Shi C, et al. Experimental study of 5 kW high stability monolithic fiber laser oscillator with or without external feedback[J]. IEEE Photonics J, 2019, 11: 1503508.

[19] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Opt Express, 2011, 19(14): 13218-13224.

[20] Otto H J, Stutzki F, Jansen F, et al. Temporal dynamics of mode-instabilities in high power fiber lasers and amplifiers[J]. Opt Express, 2012, 20: 15710-15722.

[21] Stutzki F, Otto H, Jansen F, et al. High-speed modal decomposition of mode instabilities in high-power fiber lasers[J]. Opt Lett, 2011, 36: 4572-4574.

[22] Tao R M, Ma P F, Wang X L, et al. Study of mode instabilities in high power fiber amplifiers by detecting scattering light[C]International Photonics OptoElectronics Meetings. 2014.

[23] 陶汝茂, 周朴, 肖虎, 等. 高功率光纤激光中模式不稳定性现象研究进展[J]. 激光与光电子学进展, 2014, 51:020001. (Tao Rumao, Zhou Pu, Xiao Hu, et al. Progress of study on mode instability in high power fiber amplifiers[J]. Laser & Optoelectronics Progress, 2014, 51: 020001

[24] 史尘, 陶汝茂, 王小林, 等. 光纤激光模式不稳定的新现象与新进展[J]. 中国激光, 2017, 44:0201004. (Shi Chen, Tao Rumao, Wang Xiaolin, et al. New progress and phenomena of modal instability in fiber lasers[J]. Chinese Journal of Lasers, 2017, 44: 0201004

[25] 陶汝茂, 周朴, 王小林, 等. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究[J]. 物理学报, 2014, 63:085202. (Tao Rumao, Zhou Pu, Wang Xiaolin, et al. Experimental study on mode instability in high power all-fiber master oscillator power amplifier fiber lasers[J]. Acta Physica Sinica, 2014, 63: 085202

[26] Tao R, Ma P, Wang X, et al. 1.4 kW allfiber narrowlinewidth polarizationmaintained fiber amplifier[C]The 20th International Symposium on HighPower Laser Systems Applications. 2014.

[27] Tao R, Ma P, Wang X, et al. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength[J]. Journal of Optics, 2015, 17: 045504.

[28] Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Opt Lett, 2011, 36: 3118-3120.

[29] Jansen F, Stutzki F, Otto H, et al. High-power thermally guiding index-antiguiding-core fibers[J]. Opt Lett, 2013, 38: 510-512.

[30] Yang B L, Zhang H W, Shi C, et al. 3.05 kW monolithic fiber laser oscillat with simultaneous optimizations of stimulated Raman scattering transverse mode instability[J]. Journal of Optics, 2018, 20: 025802.

[31] Malleville M, Benoît A, Dauliat R, et al. Experimental investigation of the transverse modal instabilities onset in high power fullyaperiodiclargepitch fiber lasers[C]Proc of SPIE. 2018: 1051206.

[32] Scarnera V, Ghiringhelli F, Malinowski A, et al. Modal instabilities in high power fiber laser oscillators[J]. Opt Express, 2019, 27: 4386-4403.

[33] Roohfouz A, Chenar R, Azizi S, et al. Effect of pumping configuration on the transverse mode instability power threshold in a 3.02 kW fiber laser oscillat[C]OSA Laser Congress. 2019.

[34] Chen H, Cao J, Huang Z, et al. Experimental investigations on TMI and IM-FWM in distributed side-pumped fiber amplifier[J]. IEEE Photonics J, 2020, 12: 1502413.

[35] Jauregui C, Eidam T, Limpert J, et al. Impact of modal interference on the beam quality of high-power fiber amplifiers[J]. Opt Express, 2011, 19: 3258-3271.

[36] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Opt Express, 2011, 19(11): 10180-10192.

[37] Hansen K R, Alkeskjold T T, Broeng J, et al. Thermally induced mode coupling in rare-earth doped fiber amplifiers[J]. Opt Lett, 2012, 37(12): 2382-2384.

[38] Jauregui C, Eidam T, Otto H J, et al. Physical origin of mode instabilities in high-power fiber laser systems[J]. Opt Express, 2012, 20(12): 12912-12925.

[39] Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers[J]. Opt Express, 2012, 20(10): 11407-11422.

[40] Dong L. Stimulated thermal Rayleigh scattering in optical fibers[J]. Opt Express, 2013, 21(3): 2642-2656.

[41] Hu I N, Zhu C, Zhang C, et al. Analytical timedependent they of thermallyinduced modal instabilities in high power fiber amplifiers[C]Proc of SPIE. 2013: 860109.

[42] Jauregui C, Eidam T, Otto H J, et al. Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems[J]. Opt Express, 2012, 21(1): 440-451.

[43] Chi M, Huignard J P, Petersen P M. A general theory of two-wave mixing in nonlinear media[J]. J Opt Soc Am B, 2009, 26(8): 1578-1584.

[44] Smith A V, Smith J J. Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers[J]. Opt Express, 2012, 20(22): 24545-24558.

[45] Smith A V, Smith J J. Spontaneous Rayleigh seed for stimulated Rayleigh scattering in high power fiber amplifiers[J]. IEEE Photonics J, 2013, 5: 7100807.

[46] Smith A V, Smith J J. Review of models of mode instability in fiber amplifiers[EBOL]. http:asphotonics.com.

[47] Ward B. Numerical analysis of modal instability onset in fiber amplifiers[C]Proc of SPIE. 2014: 89611U.

[48] Naderi S, Dajani I, Grosek J, et al. Theetical treatment of modal instability in high power claddingpumped Raman amplifiers[C]Proc of SPIE. 2015: 93442X.

[49] Ward B. Finite element steady periodic beam propagation analysis of mode instability in high power fiber amplifiers[J]. Opt Express, 2018, 26: 16875-16883.

[50] Smith A V, Smith J J. Steady-periodic method for modeling mode instability in fiber amplifiers[J]. Opt Express, 2013, 21(3): 2606-2623.

[51] Naderi S, Dajani I, Madden T, et al. Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations[J]. Opt Express, 2013, 21(13): 16111-16129.

[52] Eznaveh Z S, LopezGalmiche G, AntonioLopez E, et al. Bidirectional pump configuration f increasing thermal modal instabilities threshold in high power fiber amplifiers[C]Proc of SPIE. 2015: 93442G.

[53] Xia N, Yoo S. Mode instability in ytterbium-doped non-circular fibers[J]. Opt Express, 2017, 25: 13230-13251.

[54] Wang Y, Liu Q, Ma Y, et al. Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers[J]. Ann Phys, 2017: 1600398.

[55] Zhu S, Li J, Li L, et al. Mode instabilities in Yb: YAG crystalline fiber amplifiers[J]. Opt Express, 2019, 27: 35065-35078.

[56] Hansen K R, Alkeskjold T T, Broeng J, et al. Theoretical analysis of mode instability in high-power fiber amplifiers[J]. Opt Express, 2013, 21(2): 1944-1971.

[57] Hansen K R, Lægsgaard J. Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers[J]. Opt Express, 2014, 22(9): 11267-11278.

[58] Mermelstein M. Laser linewidth dependence to the transverse mode instability (TMI) nonlinear gain in kWclass fiber amplifiers[C]Proc of SPIE. 2018: 1051221.

[59] Jauregui C, Otto H-J, Stutzki F, et al. Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening[J]. Opt Express, 2015, 23: 20203-20218.

[60] Tao R, Ma P, Wang X, Zhou P, et al. 1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities[J]. Photonics Research, 2015, 3: 86-93.

[61] Kong L, Leng J, Zhou P, et al. Numerical modeling of the thermally induced core laser leakage in high power co-pumped ytterbium doped fiber amplifier[J]. High Power Laser Science and Engineering, 2018, 6: e25.

[62] Li Z, Huang Z, Xiang X, et al. Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser[J]. Photonics Research, 2017, 5: 77-81.

[63] Zervas M. Transverse mode instability analysis in fibre amplifiers[C]Proc of SPIE. 2017: 100830M.

[64] Gao W, Zhao B, Fan W, et al. Instability transverse mode phase transition of fiber oscillator for extreme power lasers[J]. Opt Express, 2019, 27: 22393-22407.

[65] Smith A V, Smith J J. Mode instability thresholds of fiber amplifiers[C]Proc of SPIE. 2013: 860108.

[66] Laurila M, Jørgensen M M, Hansen K R, et al. Distributed mode filtering rod fiber amplifier delivering 292 W with improved mode stability[J]. Opt Express, 2012, 20(5): 5742-5753.

[67] Tao R, Ma P, Wang X, et al. Study of wavelength dependence of mode instability based on a semi-analytical model[J]. IEEE J Quantum Electron, 2015, 51: 1600106.

[68] Filippov V, Ustimchik V, Chamovskiy Y, et al. Impact of axial profile of the gain medium on the mode instability in lasers: regular versus tapered fibers[C]Cleoeuropeeqec P Cj105 1 P Cj. 2015.

[69] Stihler C, Otto HJ, Jauregui C, et al. Experimental investigation of transverse mode instabilities in a doublepass Ybdoped rodtype fiber amplifier[C]Proc of SPIE. 2017: 100830R.

[70] Bobkov K, Bubnov M, Aleshkina S, et al. Long-term mode shape degradation in large mode area Yb-doped pulsed fiber amplifers[J]. Laser Phys Lett, 2017, 14: 015102.

[71] Lupi J, Johansen M, Michieletto M, et al. Static and dynamic mode coupling in double-pass rod-type fiber amplifier[J]. Opt Lett, 2018, 43(22): 5535-5538.

[72] Chen Y, Xu H, Xing Y, et al. Impact of gamma-ray radiation-induced photodarkening on mode instability degradation of an ytterbium-doped fiber amplifier[J]. Opt Express, 2018, 26: 20430-20441.

[73] Gaida C, Gebhardt C, Heuermann T, et al. Observation of transversemode instabilities in a thuliumdoped fiber amplifier[C]Proc of SPIE. 2019: 1089702.

[74] Distler V, Möller F, Strecker M, et al. High power narrowlinewidth Raman amplifier its limitation[C]Proc of SPIE. 2020: 1126005.

[75] Zhang H, Xiao H, Wang X, et al. Mode dynamics in high power Yb-Raman fiber amplifier[J]. Opt Lett, 2020, 45(13): 3394-3397.

[76] Lægsgaard J. Static thermo-optic instability in double-pass fiber amplifiers[J]. Opt Express, 2016, 24: 13429-13443.

[77] Ward B. Theory and modeling of photodarkening-induced quasi static degradation in fiber amplifiers[J]. Opt Express, 2016, 24: 3488-3501.

[78] Smith A V, Smith J J. Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm[J]. Opt. Express, 2016, 24: 975-992.

[79] Shi C, Wang X, Zhang H, et al. Simulation investigation of impact factors in photodarkening-induced beam degradation in fiber amplifers[J]. Laser Phys, 2017, 27: 105102.

[80] Tao R, Wang X, Zhou P. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications[J]. IEEE J Sel Top Quant Electron, 2018, 24: 0903319.

[81] Tao R, Ma P, Wang X, et al. Study of dopant concentrations on thermally induced mode instability in high-power fiber amplifiers[J]. Laser Phys, 2016, 26: 065103.

[82] Ward B. Accurate modeling of rodtype photonic crystal fiber amplifiers[C]Proc of SPIE. 2015: 97280F.

[83] Xia N. Investigation of transverse mode instability suppression in large mode area fibre[D]. Singape: Nanyang Technological University Library. 2019.

[84] Tao R, Wang X, Zhou P, et al. Seed power dependence of mode instabilities in high-power fiber amplifiers[J]. Journal of Optics, 2017, 19: 065202.

[85] Karow M, Tünnermann H, Neumann J, et al. Beam quality degradation of a single-frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power[J]. Opt Lett, 2012, 37: 4242-4244.

[86] Chu Q, Tao R, Li Chen, et al. Experimental study of the influence of mode excitation on mode instability in high power fiber amplifier[J]. Scientific Reports, 2019, 9: 9396.

[87] Zhang F, Xu H, Xing Y, et al. Bending diameter dependence of mode instabilities in multimode fiber amplifier[J]. Laser Phys Lett, 2019, 16: 035104.

[88] Tao R, Ma P, Wang X, et al. A novel theetical model f mode instability in high power fiber lasers[C]Advanced Solid State Lasers. 2014: AM5A20.

[89] 陶汝茂. 高功率窄线宽近衍射极限光纤激光放大器热致模式不稳定研究[D]. 长沙: 国防科学技术大学, 2015.Tao Rumao. Study of thermalinduced modal instabilities in high power narrowlinewidth fiber amplifiers with near diffractionlimited beam quality[D]. Changsha: Graduate School of National University of Defense Technology, 2015

[90] Stihler C, Jauregui C, Kholaif S, et al. The sensitivity of the mode instability threshold to different types of intensity noise[C]Proc of SPIE. 2020, 11260: 1126018.

[91] Tao R, Liu Y, Xie L, et al. Static dynamic mode evolution behavi in high power distributed sidecoupled claddingpumped fiber amplifiers[J]. submitted.

[92] Tao R, Ma P, Wang X, et al. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers[J]. Laser Phys Lett, 2015, 12: 085101.

[93] Yu C, Shatrovoy O, Fan T, et al. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier[J]. Opt Lett, 2016, 41: 5202-5205.

[94] Tao R, Ma P, Wang X, et al. Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers[J]. Journal of Optics, 2016, 18: 065501.

[95] Goodno G D, McNaught S, Thielen P, et al. Polarization control with mode stability: US8922877B1[P]. 2014XXXX.

[96] Lei M, Qi Y, Liu C, et al. Mode controlling study on narrowlinewidth high power allfiber amplifier[C]Proc of SPIE. 2015, 9543: 95431L.

[97] Nicholson J, Fini J, Yablon A, et al. Demonstration of bend-induced nonlinearities in large-mode-area fibers[J]. Opt Lett, 2007, 32: 2562-2564.

[98] Li M J, Chen X, Liu A, et al. Limit of effective area for single-mode operation in step-index large mode area laser fibers[J]. IEEE J Lightwave Tech, 2009, 27: 3010-3016.

[99] Walny M, Abramczyk J, Jacobson N, et al. Mechanical reliability of double clad fibers in typical fiber laser deployment conditions[C]Proc of SPIE. 2016: 97283A.

[100] Beier F, Möller F, Sattler B, et al. Experimental investigations on the TMI thresholds of low-NA Yb-doped single mode fibers[J]. Opt Lett, 2018, 43: 1291-1294.

[101] Hansen K, Alkeskjold T, Broeng J, et al. Thermo-optical effects in high-power Ytterbium-doped fiber amplifiers[J]. Opt Express, 2011, 19: 23965-23980.

[102] RosalesGarcia A, Tobioka H, Abedin K, et al. 2.1 kW single mode continuous wave monolithic fiber laser[C]Proc of SPIE. 2015: 93441G.

[103] Kanskar M, Zhang J, Koponen J, et al. Narrowb transversemodalinstability (TMI)free Ybdoped fiber amplifiers f directed energy application[C]Proc of SPIE. 2018: 105120F.

[104] Tao R, Ma P, Wang X, et al. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers[J]. Laser Phys Lett, 2017, 14: 025002.

[105] HansJürgen Otto, Jauregui C, Stutzki F, et al. Dependence of mode instabilities on the extracted power of fiber laser systems[C]Advanced Solid State Lasers. 2013.

[106] Xiao H, Leng J, Zhang H, et al. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump[J]. Appl Opt, 2015, 54: 8166-8169.

[107] Yagodkin R, Platonov N, Yusim A, et al. >1.5 kW narrow linewidth CW diffractionlimited fiber amplifier with 40 nm bwidth[C]Proc of SPIE. 2015: 972807.

[108] Platonov N, Shkurikhin O, Fomin V, et al. Highly efficient kW level singlemode ytterbium fiber lasers in allfiber fmat with diffractionlimited beam at wavelengths in 10001030 nm spectral range[C]Proc of SPIE. 2020: 1126003.

[109] Johansen M M, Laurila M, Maack M D, et al. Frequency resolved transverse mode instability in rod fiber amplifiers[J]. Opt Express, 2013, 21: 21847-21856.

[110] Otto H-J, Modsching N, Jauregui C, et al. Impact of photodarkening on the mode instability threshold[J]. Opt Expres, 2015, 23: 15265-15277.

[111] Chen Y, Xu H, Xing Y, et al. Mitigation of mode instability in laser oscillators based on deuterium loading[J]. Opt Express, 2019, 27: 25964-25973.

[112] Ballato J, Dragic P. Materials development for next generation optical fiber[J]. Materials, 2014, 7: 4411-4430.

[113] 陈瑰, 侯超奇, 郭海涛, 等. 用于高功率系统的掺镱石英光纤研究进展及发展趋势[J]. 光子学报, 2019, 48:1148012. (Chen Gui, Hou Chaoqi, Guo Haitao, et al. Ytterbium-doped silica fiber for high power system: a review of research progress and development trend[J]. Acta Photonica Sinica, 2019, 48: 1148012

[114] 杨保来, 王小林, 叶云, 等. 全光纤激光振荡器输出功率突破6 kW[J]. 中国激光, 2020, 47:0116001. (Yang Baolai, Wang Xiaolin, Ye Yun, et al. Laser power from all-fiber oscillators breaks through 6 kW[J]. Chinese Journal of Lasers, 2020, 47: 0116001

[115] Möller F, Krämer R, Matzdf C, et al. MultikW perfmance analysis of Ybdoped monolithic singlemode amplifier oscillat setup[C]Proc of SPIE. 2019: 108970D.

[116] Wang Y, Kitahara R, Kiyoyama W, et al. 8kW singlestage allfiber Ybdoped fiber laser with a BPP of 0.50 mmmrad[C]Proc of SPIE. 2020: 1126022.

[117] Möller F, Distler V, Schreiber T, et al. Manipulating the heat load distribution by laser gain competition in TMIlimited fiber amplifiers[C]Proc of SPIE. 2020: 1126019.

[118] Gaida C, Gebhardt M, Heuermann T, et al. Observation of transversemode instabilities in a thuliumdoped fiber amplifier[C]Proc of SPIE. 2019: 1089702.

[119] Distler V, Möller F, Strecker M, et al. High power narrowlinewidth Raman amplifier its limitation[C]Proc of SPIE. 2020: 1126005.

[120] 于海龙, 王小林, 张汉伟, 等. 300 W线偏振飞秒全光纤啁啾脉冲放大系统[J]. 强激光与粒子束, 2016, 28:050101. (Yu Hailong, Wang Xiaolin, Zhang Hanwei, et al. 300 W linearly polarized femtosecond all-fiber chirped pulse amplification system[J]. High Power Laser and Particle Beams, 2016, 28: 050101

[121] Stihler C, Jauregui C, Kholaif S, et al. The sensitivity of the mode instability threshold to different types of intensity noise[C]Proc of SPIE. 2020: 1126018.

[122] Smith A V, Smith J J. Overview of a steady-periodic model of modal instability in fiber amplifiers[J]. IEEE J Sel Topics Quantum Electron, 2014, 20(5): 472-483.

王建军, 刘玙, 李敏, 冯曦, 楚秋慧, 张春, 高聪, 陶汝茂, 林宏奂, 景峰. 光纤激光模式不稳定研究十年回顾与展望[J]. 强激光与粒子束, 2020, 32(12): 121003. Jianjun Wang, Yu Liu, Min Li, Xi Feng, Qiuhui Chu, Chun Zhang, Cong Gao, Rumao Tao, Honghuan Lin, Feng Jing. Ten-year review and prospect on mode instability research of fiber lasers[J]. High Power Laser and Particle Beams, 2020, 32(12): 121003.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!