中国激光, 2019, 46 (1): 0110002, 网络出版: 2019-01-27   

基于激光雷达对WRF模式模拟边界层高度的评估 下载: 784次

Evaluation of Boundary Layer Height Simulated by WRF Mode Based on Lidar
作者单位
1 安徽大学物质科学与信息技术研究院, 安徽 合肥 230601
2 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
引用该论文

项衍, 张天舒, 刘建国, 吕立慧. 基于激光雷达对WRF模式模拟边界层高度的评估[J]. 中国激光, 2019, 46(1): 0110002.

Xiang Yan, Zhang Tianshu, Liu Jianguo, Lü Lihui. Evaluation of Boundary Layer Height Simulated by WRF Mode Based on Lidar[J]. Chinese Journal of Lasers, 2019, 46(1): 0110002.

参考文献

[1] 蒋永成, 赵天良, 王宏, 等. 福州市PM2.5污染过程中大气边界层和区域传输研究[J]. 中国环境科学, 2015, 35(2): 347-355.

    Jiang Y C, Zhao T L, Wang H, et al. Analysis on atmospheric boundary layer and regional transport during PM2.5 pollution episodes in Fuzhou[J]. China Environmental Science, 2015, 35(2): 347-355.

[2] Asimakopoulos D N, Helmis C G, Michopoulos J. Evaluation of sodar methods for the determination of the atmospheric boundary layer mixing height[J]. Meteorology and Atmospheric Physics, 2004, 85(1/2/3): 85-92.

[3] 滕继峣, 秦凯, 汪云甲, 等. 基于激光雷达观测的大气边界层自动识别局部最优点算法[J]. 光谱学与光谱分析, 2017, 37(2): 361-367.

    Teng J Y, Qin K, Wang Y J, et al. Study on automatic identification of aerosols boundary layer height with local optimum model based on lidar data[J]. Spectroscopy and Spectral Analysis, 2017, 37(2): 361-367.

[4] 张婉春, 张莹, 吕阳, 等. 利用激光雷达探测灰霾天气大气边界层高度[J]. 遥感学报, 2013, 17(4): 981-992.

    Zhang W C, Zhang Y, Lü Y, et al. Observation of atmospheric boundary layer height by ground-based LiDAR during haze days[J]. Journal of Remote Sensing, 2013, 17(4): 981-992.

[5] 吕立慧, 刘文清, 张天舒, 等. 基于激光雷达的京津冀地区大气边界层高度特征研究[J]. 激光与光电子学进展, 2017, 54(1): 010101.

    Lü L H, Liu W Q, Zhang T S, et al. Characteristics of boundary layer height in Jing-Jin-Ji area based on lidar[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010101.

[6] 王琳, 谢晨波, 韩永, 等. 测量大气边界层高度的激光雷达数据反演方法研究[J]. 大气与环境光学学报, 2012, 7(4): 241-247.

    Wang L, Xie C B, Han Y, et al. Comparison of retrieval methods of planetary boundary layer height from lidar data[J]. Journal of Atmospheric and Environmental Optics, 2012, 7(4): 241-247.

[7] 陈炯, 王建捷. 北京地区夏季边界层结构日变化的高分辨模拟对比[J]. 应用气象学报, 2006, 17(4): 403-411.

    Chen J, Wang J J. Diurnal cycles of the boundary layer structure simulated by WRF in Beijing[J]. Journal of Applied Meteorological Science, 2006, 17(4): 403-411.

[8] 赵世强, 张镭, 王治厅, 等. 利用激光雷达结合数值模式估算兰州远郊榆中地区夏季边界层高度[J]. 气候与环境研究, 2012, 17(5): 523-531.

    Zhao S Q, Zhang L, Wang Z T, et al. Boundary layer height estimate in summer over the Lanzhou suburb in the Yuzhong area using lidar measurement and numerical model[J]. Climatic and Environmental Research, 2012, 17(5): 523-531.

[9] 何心河. 2014年秋季京津冀地区PM2.5污染过程的数值模拟研究[D]. 北京: 中国气象科学研究院, 2015.

    He XH. The simulation of PM2.5 pollution in autumn over Beijing, Tianjin and Hebei region[D]. Beijing: Chinese Academy of Meteorological Sciences, 2015.

[10] 王丽霞, 王颖, 赖锡柳, 等. WRF模式不同边界层参数化方案模拟兰州冬季边界层高度的研究[J]. 高原气象, 2017, 36(1): 162-172.

    Wang L X, Wang Y, Lai X L, et al. Study on the simulation of boundary layer height in Lanzhou in winter using WRF model with different boundary layer parameterization schemes[J]. Plateau Meteorology, 2017, 36(1): 162-172.

[11] 祝叶华. 2015年环境科学热点回眸[J]. 科技导报, 2016, 34(1): 99-113.

    Zhu Y H. Environmental science hot spots in 2015[J]. Science & Technology Review, 2016, 34(1): 99-113.

[12] Lv L, Liu W Q, Zhang T S, et al. Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique[J]. Atmospheric Environment, 2017, 164: 360-369.

[13] Chen Z Y, Zhang J S, Zhang T S, et al. Haze observations by simultaneous lidar and WPS in Beijing before and during APEC, 2014[J]. Science China Chemistry, 2015, 58(9): 1385-1392.

[14] 罗远, 贺岩, 耿立明, 等. 基于光子计数技术的远程测距激光雷达[J]. 中国激光, 2016, 43(5): 0514001.

    Luo Y, He Y, Geng L M, et al. Long-distance laser ranging lidar based on photon counting technology[J]. Chinese Journal of Lasers, 2016, 43(5): 0514001.

[15] LiuC, Fan GQ, Lv LH, et al. Observation of the boundary layer structure and aerosol properties over Yangtze River Zone using mobile shipboard lidar[C]∥Optics and Photonics for Energy and the Enviroment 2016, November 14-17, 2016, Leipzig Germany. Washington: OSA, 2016: JW4A. 28.

[16] Wang Z, Cao X, Zhang L, et al. Lidar measurement of planetary boundary layer height and comparison with microwave profiling radiometer observation[J]. Atmospheric Measurement Techniques, 2012, 5(8): 1965-1972.

[17] 王琳, 谢晨波, 王珍珠, 等. 激光雷达探测大气边界层高度分布的梯度法应用研究[J]. 大气与环境光学学报, 2012, 7(3): 161-167.

    Wang L, Xie C B, Wang Z Z, et al. Application of gradient method to detect height distribution of atmospheric boundary layer with lidar[J]. Journal of Atmospheric and Environmental Optics, 2012, 7(3): 161-167.

[18] 张薇, 吴松华, 宋小全, 等. 夫琅禾费暗线激光雷达探测青岛市郊大气边界层[J]. 光学学报, 2013, 33(6): 0628002.

    Zhang W, Wu S H, Song X Q, et al. Atmospheric boundary layer detected by a Fraunhofer lidar over Qingdao suburb[J]. Acta Optica Sinica, 2013, 33(6): 0628002.

[19] 伯广宇, 刘东, 王邦新, 等. 探测云和气溶胶的机载双波长偏振激光雷达[J]. 中国激光, 2012, 39(10): 1014002.

    Bo G Y, Liu D, Wang B X, et al. Two-wavelength polarization airborne lidar for observation of aerosol and cloud[J]. Chinese Journal of Lasers, 2012, 39(10): 1014002.

[20] 项衍, 叶擎昊, 刘建国, 等. 基于图像边缘检测法反演大气边界层高度[J]. 中国激光, 2016, 43(7): 0704003.

    Xiang Y, Ye Q H, Liu J G, et al. Retrieve of planetary boundary layer height based on image edge detection[J]. Chinese Journal of Lasers, 2016, 43(7): 0704003.

[21] 李霞, 权建农, 王飞, 等. 激光雷达反演边界层高度方法评估及其在北京的应用[J]. 大气科学, 2018, 42(2): 435-446.

    Li X, Quan J N, Wang F, et al. Evaluation of the method for planetary boundary layer height retrieval by lidar and its application in Beijing[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(2): 435-446.

[22] 庞杨, 韩志伟, 朱彬, 等. 利用WRF-chem模拟研究京津冀地区夏季大气污染物的分布和演变[J]. 大气科学学报, 2013, 36(6): 674-682.

    Pang Y, Han Z W, Zhu B, et al. A model study on distribution and evolution of atmospheric pollutants over Beijing-Tianjin-Hebei region in summertime with WRF-Chem[J]. Transactions of Atmospheric Sciences, 2013, 36(6): 674-682.

[23] Lin Y L, Farley R D, Orville H D. Bulk parameterization of the snow field in a cloud model[J]. Journal of Climate and Applied Meteorology, 1983, 22(6): 1065-1092.

[24] Mlawer E J, Taubman S J, Brown P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 16663-16682.

[25] Ek M B. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model[J]. Journal of Geophysical Research, 2003, 108(D22): 8851.

[26] Hong S Y. A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(651): 1481-1496.

[27] Grell G A. 29(14): 38-1-38-4[J]. Dévényi D. A generalized approach to parameterizing convection combining ensemble, data assimilation techniques. Geophysical Research Letters, 2002.

[28] 毕雪岩, 刘烽, 吴兑. 几种大气稳定度分类标准计算方法的比较分析[J]. 热带气象学报, 2005, 21(4): 402-409.

    Bi X Y, Liu F, Wu D. Comparison of some limit for stability classification[J]. Journal of Tropical Meteorology, 2005, 21(4): 402-409.

[29] Seibert P, Beyrich F, Gryning S E, et al. Review and intercomparison of operational methods for the determination of the mixing height[J]. Atmospheric Environment, 2000, 34(7): 1001-1027.

[30] 柴发合. 空气重污染红色预警首次启动[J]. 世界环境, 2016( 1): 25- 26.

    Chai FH. China issued red alert on heavy air pollution for the first time[J]. World Environment, 2016( 1): 25- 26.

项衍, 张天舒, 刘建国, 吕立慧. 基于激光雷达对WRF模式模拟边界层高度的评估[J]. 中国激光, 2019, 46(1): 0110002. Xiang Yan, Zhang Tianshu, Liu Jianguo, Lü Lihui. Evaluation of Boundary Layer Height Simulated by WRF Mode Based on Lidar[J]. Chinese Journal of Lasers, 2019, 46(1): 0110002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!