中国激光, 2020, 47 (8): 0806002, 网络出版: 2020-08-17   

紫外空芯反谐振光纤的研制 下载: 923次

UV Guiding Hollow-Core Antiresonant Fiber
王梦玲 1,2,3高寿飞 1,2,3汪滢莹 1,2,3,*王璞 1,2,3
作者单位
1 北京工业大学材料与制造学部, 北京 100124
2 北京工业大学国家产学研激光技术中心, 北京 100124
3 北京工业大学跨尺度激光成型制造技术教育部重点实验室, 北京 100124
引用该论文

王梦玲, 高寿飞, 汪滢莹, 王璞. 紫外空芯反谐振光纤的研制[J]. 中国激光, 2020, 47(8): 0806002.

Wang Mengling, Gao Shoufei, Wang Yingying, Wang Pu. UV Guiding Hollow-Core Antiresonant Fiber[J]. Chinese Journal of Lasers, 2020, 47(8): 0806002.

参考文献

[1] 崔宇龙, 周智越, 黄威, 等. 基于反共振空芯光纤的4.3 μm二氧化碳激光器[J]. 光学学报, 2019, 39(12): 1214002.

    Cui Y L, Zhou Z Y, Huang W, et al. Anti-resonant hollow-core fibers based 4.3-μm carbon dioxide lasers[J]. Acta Optica Sinica, 2019, 39(12): 1214002.

[2] 黄威, 崔宇龙, 李智贤, 等. 基于空芯光纤中氢气受激拉曼散射的1.7 μm光纤激光光源研究[J]. 光学学报, 2020, 40(5): 0514001.

    Huang W, Cui Y L, Li Z X, et al. Research on 1.7 μm fiber laser source based on stimulated Raman scattering of hydrogen in hollow-core fiber[J]. Acta Optica Sinica, 2020, 40(5): 0514001.

[3] 聂世琳, 管迎春. 紫外激光器及其在微加工中的应用[J]. 光电工程, 2017, 44(12): 1169-1179.

    Shilin N, Yingchun G. Review of UV laser and its applications in micromachining[J]. Opto-Electronic Engineering, 2017, 44(12): 1169-1179.

[4] 王磊. 紫外激光在半导体芯片切割中优势的研究[J]. 电子工业专用设备, 2010, 39(4): 13-16.

    Wang L. Research on advantages of UV laser in semiconductor wafer cutting[J]. Equipment for Electronic Products Manufacturing, 2010, 39(4): 13-16.

[5] Wan Y, Gebert F, Wübbena J B, et al. Precision spectroscopy by photon-recoil signal amplification[J]. Nature Communications, 2014, 5: 3096.

[6] Ludlow A D, Boyd M M, Ye J, et al. Optical atomic clocks[J]. Reviews of Modern Physics, 2015, 87(2): 637-701.

[7] Häffner H, Hänsel W, Roos C F, et al. Scalable multiparticle entanglement of trapped ions[J]. Nature, 2005, 438(7068): 643-646.

[8] Britton J W, Sawyer B C, Keith A C, et al. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins[J]. Nature, 2012, 484(7395): 489-492.

[9] 宋光辉, 姚春龙, 王银河, 等. 紫外光刻机曝光系统用精密介质膜反射镜及其镀制方法: CN204903941U[P].2015-11-25.

    Song GH, Yao CL, Wang YH, et al. and plating method of precise dielectric film reflector: CN204903941U[P].2015-11-25.

[10] 李灿, 冯兆池, 曹凝. 深紫外激光拉曼光谱仪研制[J]. 中国科学院院刊, 2011, 26(5): 589-592.

    Li C, Feng Z C, Cao N. Development of deep ultraviolet laser Raman spectrometer[J]. Bulletin of the Chinese Academy of Sciences, 2011, 26(5): 589-592.

[11] 黄保坤, 安虹宇, 范峰滔. 小型紫外拉曼光谱仪[J]. 光散射学报, 2017, 29(4): 348-353.

    Huang B K, An H Y, Fan F T. Mini UV Raman spectrometer[J]. The Journal of Light Scattering, 2017, 29(4): 348-353.

[12] 汪正民. 在217~400 nm之间连续可调的新型紫外共振拉曼光谱仪[J]. 国外科学仪器, 1986, 9(3): 23-26.

    Wang Z M. A novel UV resonance Raman spectrometer with continuous tunability between 217 and 400 nm[J]. International Instruments, 1986, 9(3): 23-26.

[13] Dragomir A. McInerney J G, Nikogosyan D N, et al. Two-photon absorption properties of commercial fused silica and germanosilicate glass at 264 nm[J]. Applied Physics Letters, 2002, 80(7): 1114-1116.

[14] Lancry M, Poumellec B. UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials[J]. Physics Reports, 2013, 523(4): 207-229.

[15] Skuja L, Hosono H, Hirano M. Laser-induced color centers in silica[J]. Proceedings of SPIE, 2001, 4347: 155-168.

[16] Colombe Y, Slichter D H, Wilson A C, et al. Single-mode optical fiber for high-power, low-loss UV transmission[J]. Optics Express, 2014, 22(16): 19783-19793.

[17] Marciniak C D, Ball H B. Hung A T H, et al. Towards fully commercial, UV-compatible fiber patch cords[J]. Optics Express, 2017, 25(14): 15643-15661.

[18] 高寿飞, 汪滢莹, 王璞. 反谐振空芯光纤及气体拉曼激光技术的研究进展[J]. 中国激光, 2019, 46(5): 0508014.

    Gao S F, Wang Y Y, Wang P. Research progress on hollow-core anti-resonant fiber and gas Raman laser technology[J]. Chinese Journal of Lasers, 2019, 46(5): 0508014.

[19] 洪奕峰, 汪滢莹, 丁伟, 等. 保偏空芯光纤的研究进展[J]. 光子学报, 2019, 48(11): 1148010.

    Hong Y F, Wang Y Y, Ding W, et al. Research progress on polarization maintaining hollow core fiber[J]. Acta Photonica Sinica, 2019, 48(11): 1148010.

[20] 夏长明, 周桂耀. 微结构光纤的研究进展及展望[J]. 激光与光电子学进展, 2019, 56(17): 170603.

    Xia C M, Zhou G Y. Progress and prospect of microstructured optical fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170603.

[21] 庞璐, 张慧嘉, 宁鼎. 紫外纯石英空芯微结构光纤的研究进展[J]. 光通信技术, 2018, 42(3): 29-32.

    Pang L, Zhang H J, Ning D. Research progress of ultraviolet pure silica hollow core microstructure optical fiber[J]. Optical Communication Technology, 2018, 42(3): 29-32.

[22] Gao S F, Wang Y Y, Ding W, et al. Hollow-core negative-curvature fiber for UV guidance[J]. Optics Letters, 2018, 43(6): 1347-1350.

[23] Yu F, Cann M, Brunton A, et al. Single-mode solarization-free hollow-core fiber for ultraviolet pulse delivery[J]. Optics Express, 2018, 26(8): 10879-10887.

[24] Marcatili E A J, Schmeltzer R A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers[J]. Bell System Technical Journal, 1964, 43(4): 1783-1809.

[25] Stratton JA. Electromagnetic theory[M]. New York: McGraw-Hill Companies, 1941: 524.

[26] Jasion G T, Hayes J R, Wheeler N V, et al. Fabrication of tubular anti-resonant hollow core fibers: modelling, draw dynamics and process optimization[J]. Optics Express, 2019, 27(15): 20567-20582.

王梦玲, 高寿飞, 汪滢莹, 王璞. 紫外空芯反谐振光纤的研制[J]. 中国激光, 2020, 47(8): 0806002. Wang Mengling, Gao Shoufei, Wang Yingying, Wang Pu. UV Guiding Hollow-Core Antiresonant Fiber[J]. Chinese Journal of Lasers, 2020, 47(8): 0806002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!