中国激光, 2021, 48 (2): 0202004, 网络出版: 2021-01-07   

飞秒激光加工低维纳米材料及应用 下载: 2879次特邀综述

Femtosecond Laser Processing of Low-Dimensional Nanomaterials and Its Application
作者单位
1 北京理工大学机械与车辆学院激光微纳制造实验室, 北京 100081
2 清华大学摩擦学国家重点实验室, 北京 100084
3 清华大学先进成形制造教育部重点实验室, 北京 100084
引用该论文

田梦瑶, 左佩, 梁密生, 许晨阳, 原永玖, 张学强, 闫剑锋, 李欣. 飞秒激光加工低维纳米材料及应用[J]. 中国激光, 2021, 48(2): 0202004.

Mengyao Tian, Pei Zuo, Misheng Liang, Chenyang Xu, Yongjiu Yuan, Xueqiang Zhang, Jianfeng Yan, Xin Li. Femtosecond Laser Processing of Low-Dimensional Nanomaterials and Its Application[J]. Chinese Journal of Lasers, 2021, 48(2): 0202004.

参考文献

[1] Li Y, Li Z W, Chi C, et al. Plasmonics of 2D nanomaterials: properties and applications[J]. Advanced Science, 2017, 4(8): 1600430.

[2] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[3] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.

[4] Bhimanapati G R, Lin Z, Meunier V, et al. Recent advances in two-dimensional materials beyond graphene[J]. ACS Nano, 2015, 9(12): 11509-11539.

[5] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150.

[6] Voiry D, Salehi M, Silva R, et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction[J]. Nano Letters, 2013, 13(12): 6222-6227.

[7] Muehlethaler C, Considine C R, Menon V, et al. Ultrahigh Raman enhancement on monolayer MoS2[J]. ACS Photonics, 2016, 3(7): 1164-1169.

[8] Wu W, Wang L, Li Y, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics[J]. Nature, 2014, 514(7523): 470-474.

[9] Yoon Y, Ganapathi K, Salahuddin S. How good can monolayer MoS2 transistors be?[J]. Nano Letters, 2011, 11(9): 3768-3773.

[10] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.

[11] Chen X, Liu L, Huang F. Black titanium dioxide (TiO2) nanomaterials[J]. Chemical Society Reviews, 2015, 44(7): 1861-1885.

[12] Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chemical Reviews, 2014, 114(19): 9919-9986.

[13] Liu L, Chen X. Titanium dioxide nanomaterials:self-structural modifications[J]. Chemical Reviews, 2014, 114(19): 9890-9918.

[14] Fattakhova-Rohlfing D, Zaleska A, Bein T. Three-dimensional titanium dioxide nanomaterials[J]. Chemical Reviews, 2014, 114(19): 9487-9558.

[15] Ge M Z, Cao C Y, Huang J Y, et al. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications[J]. Journal of Materials Chemistry A, 2016, 4(18): 6772-6801.

[16] Crossland E J W, Noel N, Sivaram V, et al. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance[J]. Nature, 2013, 495(7440): 215-219.

[17] Yang L, Wei J T, Ma Z, et al. The fabrication of micro/nano structures by laser machining[J]. Nanomaterials, 2019, 9(12): 1789.

[18] Hong S, Lee H, Yeo J, et al. Digital selective laser methods for nanomaterials:from synthesis to processing[J]. Nano Today, 2016, 11(5): 547-564.

[19] Yeon J H, Lee Y J, Yoo D E, et al. High throughput ultralong (20 cm) nanowire fabrication using a wafer-scale nanograting template[J]. Nano Letters, 2013, 13(9): 3978-3984.

[20] 周忠仁, 董鹏, 李普良, 等. 硅纳米线制备方法研究进展[J]. 有色设备, 2020( 2): 1- 3.

    Zhou ZR, DongP, Li PL, et al. Research progress on the preparation methods of silicon nanowires[J].Nonferrous Metallurgical Equipment, 2020( 2): 1- 3.

[21] Han M, Liu S L, Zhang L Y, et al. Synthesis of octopus-tentacle-like Cu nanowire-Ag nanocrystals heterostructures and their enhanced electrocatalytic performance for oxygen reduction reaction[J]. Acs Applied Materials & Interfaces, 2012, 4(12): 6654-6660.

[22] Xiong W, Zhou Y S, Hou W J, et al. Laser-based micro/nanofabrication in one, two and three dimensions[J]. Frontiers of Optoelectronics, 2015, 8(4): 351-378.

[23] 李帮林. 二维与零维二硫化钼纳米材料的制备及生物传感应用研究[D]. 重庆: 西南大学, 2015.

    Li BL. Study on the preparation of two- and zero-dimensional MoS2 nanomaterials and their applications in biosensors[D]. Chongqing: Southwest University, 2015.

[24] Wang D Z, Pan Z, Wu Z Z, et al. Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts[J]. Journal of Power Sources, 2014, 264: 229-234.

[25] Semaltianos N G. Nanoparticles by laser ablation[J]. Critical Reviews in Solid State and Materials Sciences, 2010, 35(2): 105-124.

[26] Gopalakrishnan D, Damien D, Li B, et al. Electrochemical synthesis of luminescent MoS2 quantum dots[J]. Chemical Communications (Cambridge, England), 2015, 51(29): 6293-6296.

[27] Li W H, Shen Y L, Xiao X, et al. Simple Te-thermal converting 2H to 1T@2H MoS2 homojunctions with enhanced supercapacitor performance[J]. ACS Applied Energy Materials, 2019, 2(11): 8337-8344.

[28] Gan X R. Lee L Y S, Wong K Y, et al. 2H/1T phase transition of multilayer MoS2 by electrochemical incorporation of S vacancies[J]. ACS Applied Energy Materials, 2018, 1(9): 4754-4765.

[29] Xu X L, Chen S L, Liu S, et al. Millimeter-scale single-crystalline semiconducting MoTe2 via solid-to-solid phase transformation[J]. Journal of the American Chemical Society, 2019, 141(5): 2128-2134.

[30] Rezaei S, Li J, Herman P R. Burst train generator of high energy femtosecond laser pulses for driving heat accumulation effect during micromachining[J]. Optics Letters, 2015, 40(9): 2064-2067.

[31] Zhu J, Wang Z, Yu H, et al. Argon plasma induced phase transition in monolayer MoS2[J]. Journal of the American Chemical Society, 2017, 139(30): 10216-10219.

[32] Cho S, Kim S, Kim J H, et al. Phase patterning for ohmic homojunction contact inMo Te2[J]. Science, 2015, 349(6248): 625-628.

[33] Li X, Jiang L, Wang C, et al. Transient localized material properties changes by ultrafast laser-pulse manipulation of electron dynamics in micro/nano manufacturing[J]. MRS Proceedings, 2011, 1365: 3-8.

[34] Le Harzic R, Huot N, Audouard E, et al. Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy[J]. Applied Physics Letters, 2002, 80(21): 3886-3888.

[35] Nolte S, Momma C, Jacobs H, et al. Ablation of metals by ultrashort laser pulses[J]. Journal of the Optical Society of America B, 1997, 14(10): 2716-2722.

[36] Kautek W, Krüger J, Lenzner M, et al. Laser ablation of dielectrics with pulse durations between 20fs and 3ps[J]. Applied Physics Letters, 1996, 69(21): 3146-3148.

[37] Wang H N, Zhang C J, Rana F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2[J]. Nano Letters, 2015, 15(1): 339-345.

[38] Pogna E A A, Marsili M, de Fazio D, et al. Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS2[J]. ACS Nano, 2016, 10(1): 1182-1188.

[39] Hong X P, Kim J, Shi S F, et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures[J]. Nature Nanotechnology, 2014, 9(9): 682-686.

[40] 钟敏霖, 范培迅. 激光纳米制造技术的应用[J]. 中国激光, 2011, 38(6): 0601001.

    Zhong M L, Fan P X. Applications of laser nano manufacturing technologies[J]. Chinese Journal of Lasers, 2011, 38(6): 0601001.

[41] 夏博, 姜澜, 王素梅, 等. 飞秒激光微孔加工[J]. 中国激光, 2013, 40(2): 0201001.

    Xia B, Jiang L, Wang S M, et al. Femtosecond laser drilling of micro-holes[J]. Chinese Journal of Lasers, 2013, 40(2): 0201001.

[42] Li R Z, Peng R, Kihm K D, et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes[J]. Energy & Environmental Science, 2016, 9(4): 1458-1467.

[43] Zhao Y Y, Zhang Y L, Zheng M L, et al. Three-dimensional Luneburg lens at optical frequencies[J]. Laser & Photonics Reviews, 2016, 10(4): 665-672.

[44] Ma Y L, Jiang L, Hu J, et al. Multifunctional 3D micro-nanostructures fabricated through temporally shaped femtosecond laser processing for preventing thrombosis and bacterial infection[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17155-17166.

[45] Zuo P, Jiang L, Li X, et al. Maskless micro/nanopatterning and bipolar electrical rectification of MoS2 flakes through femtosecond laser direct writing[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 39334-39341.

[46] Zuo P, Jiang L, Li X, et al. Enhancing charge transfer with foreign molecules through femtosecond laser induced MoS2 defect sites for photoluminescence control and SERS enhancement[J]. Nanoscale, 2019, 11(2): 485-494.

[47] Li B, Jiang L, Li X, et al. Controllable synthesis of nanosized amorphous MoSx using temporally shaped femtosecond laser for highly efficient electrochemical hydrogen production[J]. Advanced Functional Materials, 2019, 29(1): 1806229.

[48] Chen Y, Lai Z C, Zhang X, et al. Phase engineering of nanomaterials[J]. Nature Reviews Chemistry, 2020, 4(5): 243-256.

[49] Zhang Y L, Chen Q D, Xia H, et al. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 2010, 5(5): 435-448.

[50] Liu X Q, Chen Q D, Guan K M, et al. Dry-etching-assisted femtosecond laser machining[J]. Laser & Photonics Reviews, 2017, 11(3): 1600115.

[51] Patil P P, Phase D M, Kulkarni S A, et al. Pulsed-laser-induced reactive quenching at liquid-solid interface:aqueous oxidation of iron[J]. Physical Review Letters, 1987, 58(3): 238-241.

[52] Sakka T, Saito K, Ogata Y H. Confinement effect of laser ablation plume in liquids probed by self-absorption of C2 Swan band emission[J]. Journal of Applied Physics, 2005, 97(1): 014902.

[53] Barcikowski S, Compagnini G. Advanced nanoparticle generation and excitation by lasers in liquids[J]. Physical Chemistry Chemical Physics, 2013, 15(9): 3022-3026.

[54] Asahi T, Mafuné F, Rehbock C, et al. Strategies to harvest the unique properties of laser-generated nanomaterials in biomedical and energy applications[J]. Applied Surface Science, 2015, 348: 1-3.

[55] Eliezer S, Eliaz N, Grossman E, et al. Synthesis of nanoparticles with femtosecond laser pulses[J]. Physical Review B, 2004, 69(14): 144119.

[56] Wang H Q, Pyatenko A, Kawaguchi K, et al. Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres[J]. Angewandte Chemie International Edition, 2010, 49(36): 6361-6364.

[57] Jiang L, Wang A D, Li B, et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication:modeling, method, measurement and application[J]. Light: Science & Applications, 2018, 7(2): 17134.

[58] Zhang D S, Liu J, Li P F, et al. Recent advances in surfactant-free, surface-charged, and defect-rich catalysts developed by laser ablation and processing in liquids[J]. ChemNanoMat, 2017, 3(8): 512-533.

[59] Sylvestre J P, Kabashin A V, Sacher E, et al. Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution[J]. Applied Physics A, 2005, 80(4): 753-758.

[60] Tan D Z, Lin G, Liu Y, et al. Synthesis of nanocrystalline cubic zirconia using femtosecond laser ablation[J]. Journal of Nanoparticle Research, 2011, 13(3): 1183-1190.

[61] Li B, Jiang L, Li X, et al. Preparation of monolayer MoS2 quantum dots using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water[J]. Scientific Reports, 2017, 7: 11182.

[62] Levis R J. Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses[J]. Science, 2001, 292(5517): 709-713.

[63] Nakamura T, Takasaki K, Ito A, et al. Fabrication of platinum particles by intense, femtosecond laser pulse irradiation of aqueous solution[J]. Applied Surface Science, 2009, 255(24): 9630-9633.

[64] Herbani Y, Nakamura T, Sato S. Synthesis of near-monodispersed Au-Ag nanoalloys by high intensity laser irradiation of metal ions in hexane[J]. The Journal of Physical Chemistry C, 2011, 115(44): 21592-21598.

[65] Son Y, Yeo J, Moon H, et al. Nanoscale electronics:digital fabrication by direct femtosecond laser processing of metal nanoparticles[J]. Advanced Materials, 2011, 23(28): 3176-3181.

[66] Zhao Y Y, Zheng M L, Dong X Z, et al. Tailored silver grid as transparent electrodes directly written by femtosecond laser[J]. Applied Physics Letters, 2016, 108(22): 221104.

[67] Wang A D, Jiang L, Li X W, et al. Mask-free patterning of high-conductivity metal nanowires in open air by spatially modulated femtosecond laser pulses[J]. Advanced Materials, 2015, 27(40): 6238-6243.

[68] Xiong W, Liu Y, Jiang L J, et al. Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication[J]. Advanced Materials, 2016, 28(10): 2002-2009.

[69] 崔云, 张晗宇, 赵元安, 等. 飞秒激光作用下金膜的微观特性变化[J]. 中国激光, 2019, 46(2): 0203001.

    Cui Y, Zhang H Y, Zhao Y A, et al. Microscopic properties changes of Au film under action of femtosecond laser[J]. Chinese Journal of Lasers, 2019, 46(2): 0203001.

[70] Shi X, Li X, Jiang L, et al. Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films[J]. Scientific Reports, 2015, 5: 17557.

[71] Liu Y Q, Mao J W, Chen Z D, et al. Three-dimensional micropatterning of graphene by femtosecond laser direct writing technology[J]. Optics Letters, 2019, 45(1): 113-116.

[72] Zuo P, Jiang L, Li X, et al. Shape-controllable gold nanoparticle-MoS2 hybrids prepared by tuning edge-active sites and surface structures of MoS2 via temporally shaped femtosecond pulses[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7447-7455.

[73] Li J, Yang X D, Liu Y, et al. General synthesis of two-dimensional van der Waals heterostructure arrays[J]. Nature, 2020, 579(7799): 368-374.

[74] Ahmmed K, Grambow C, Kietzig A M. Fabrication of micro/nano structures on metals by femtosecond laser micromachining[J]. Micromachines, 2014, 5(4): 1219-1253.

[75] Ran P, Jiang L, Li X, et al. Redox shuttle enhances nonthermal femtosecond two-photon self-doping of rGO-TiO2-x photocatalysts under visible light[J]. Journal of Materials Chemistry A, 2018, 6(34): 16430-16438.

[76] Cai M, Fan P, Long J, et al. Large-scale tunable 3D self-supporting WO3 micro-nano architectures as direct photoanodes for efficient photoelectrochemical water splitting[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 17856-17864.

[77] Jiang J, Ou-Yang L, Zhu L, et al. Novel one-pot fabrication of lab-on-a-bubble@Ag substrate without coupling-agent for surface enhanced Raman scattering[J]. Scientific Reports, 2014, 4: 3942.

[78] Ling X, Fang W J, Lee Y H, et al. Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2[J]. Nano Letters, 2014, 14(6): 3033-3040.

[79] 孙文峰, 洪瑞金, 陶春先, 等. 脉冲激光改性金属纳米薄膜的等离子体特性[J]. 中国激光, 2020, 47(1): 0103001.

    Sun W F, Hong R J, Tao C X, et al. Pulsed-laser-modified plasmon properties of metal nanofilms[J]. Chinese Journal of Lasers, 2020, 47(1): 0103001.

[80] Ran P, Jiang L, Li X, et al. Femtosecond photon-mediated plasma enhances photosynthesis of plasmonic nanostructures and their SERS applications[J]. Small, 2019, 15(11): 1804899.

[81] Katz A, Redlich M, Rapoport L, et al. Self-lubricating coatings containing fullerene-like WS2 nanoparticles for orthodontic wires and other possible medical applications[J]. Tribology Letters, 2006, 21(2): 135-139.

[82] Wu H, Yang R, Song B, et al. Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water[J]. ACS Nano, 2011, 5(2): 1276-1281.

[83] Zhang Y L, Guo L, Wei S, et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction[J]. Nano Today, 2010, 5(1): 15-20.

[84] Xu C Y, Jiang L, Li X, et al. Miniaturized high-performance metallic 1T-phase MoS2 micro-supercapacitors fabricated by temporally shaped femtosecond pulses[J]. Nano Energy, 2020, 67: 104260.

[85] In J B, Hsia B, Yoo J H, et al. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide[J]. Carbon, 2015, 83: 144-151.

[86] Ding S Y, Yi J, Li J F, et al. Erratum: nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials, 2016, 16036.

[87] 高文, 郑美玲, 金峰, 等. 飞秒激光快速制备大面积二维微纳结构[J]. 激光与光电子学进展, 2020, 57(11): 111421.

    Gao W, Zheng M L, Jin F, et al. Fast fabrication of large-area two-dimensional micro/nanostructure by femtosecond laser[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111421.

[88] 原永玖, 李欣. 飞秒激光加工石墨烯材料及其应用[J]. 激光与光电子学进展, 2020, 57(11): 111414.

    Yuan Y J, Li X. Femtosecond laser processing of graphene and its application[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111414.

[89] 吴雪峰, 尹海亮, 李强. 飞秒激光加工碳纳米管薄膜试验研究[J]. 中国激光, 2019, 46(9): 0902002.

    Wu X F, Yin H L, Li Q. Femtosecond laser processing of carbon nanotubes film[J]. Chinese Journal of Lasers, 2019, 46(9): 0902002.

田梦瑶, 左佩, 梁密生, 许晨阳, 原永玖, 张学强, 闫剑锋, 李欣. 飞秒激光加工低维纳米材料及应用[J]. 中国激光, 2021, 48(2): 0202004. Mengyao Tian, Pei Zuo, Misheng Liang, Chenyang Xu, Yongjiu Yuan, Xueqiang Zhang, Jianfeng Yan, Xin Li. Femtosecond Laser Processing of Low-Dimensional Nanomaterials and Its Application[J]. Chinese Journal of Lasers, 2021, 48(2): 0202004.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!