中国激光, 2021, 48 (2): 0202019, 网络出版: 2021-01-07   

透明介质材料的超快激光微纳加工研究进展 下载: 2807次特邀综述

Research Advancement on Ultrafast Laser Microprocessing of Transparent Dielectrics
作者单位
1 清华大学机械工程系, 北京 100084
2 北京理工大学机械车辆学院, 北京 100081
3 清华大学化学系, 北京 100084
引用该论文

李佳群, 闫剑锋, 李欣, 曲良体. 透明介质材料的超快激光微纳加工研究进展[J]. 中国激光, 2021, 48(2): 0202019.

Jiaqun Li, Jianfeng Yan, Xin Li, Liangti Qu. Research Advancement on Ultrafast Laser Microprocessing of Transparent Dielectrics[J]. Chinese Journal of Lasers, 2021, 48(2): 0202019.

参考文献

[1] 李江, 姜楠, 徐圣泉, 等. 红外透明MgO-Y2O3纳米复相陶瓷研究进展[J]. 硅酸盐学报, 2016, 44(9): 1302-1314.

    Li J, Jiang N, Xu S Q, et al. Resent development on infrared transparent MgO-Y2O3 nanocomposite ceramics[J]. Journal of the Chinese Ceramic Society, 2016, 44(9): 1302-1314.

[2] Fu Y P, Cai X, Wu H W, et al. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage[J]. Advanced Materials, 2012, 24(42): 5713-5718.

[3] 叶羽婷, 马辉, 孙春雷, 等. 柔性光子材料与器件的研究进展[J]. 激光与光电子学进展, 2020, 57(3): 030001.

    Ye Y T, Ma H, Sun C L, et al. Research progress on flexible photonic materials and devices[J]. Laser & Optoelectronics Progress, 2020, 57(3): 030001.

[4] McMillen B, Zhang B T, Chen K P, et al. Ultrafast laser fabrication of low-loss waveguides in chalcogenide glass with 0.65 dB/cm loss[J]. Optics Letters, 2012, 37(9): 1418-1420.

[5] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697-698.

[6] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3(4): e149.

[7] Kerse C. KalaycIo ɡ̬lu H, Elahi P, et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 2016, 537(7618): 84-88.

[8] 季凌飞, 马瑞, 张熙民, 等. 激光剥离技术在柔性电子制造领域的应用研究进展[J]. 中国激光, 2020, 47(1): 0100001.

    Ji L F, Ma R, Zhang X M, et al. Application of laser lift-off technique in flexible electronics manufacturing[J]. Chinese Journal of Lasers, 2020, 47(1): 0100001.

[9] 钟敏霖, 范培迅. 激光纳米制造技术的应用[J]. 中国激光, 2011, 38(6): 0601001.

    Zhong M L, Fan P X. Applications of laser nano manufacturing technologies[J]. Chinese Journal of Lasers, 2011, 38(6): 0601001.

[10] 胡培鑫, 姚路, 吕启涛, 等. VITA MARK Ⅱ牙科玻璃陶瓷超快激光铣削工艺[J]. 激光与光电子学进展, 2020, 57(5): 051402.

    Hu P X, Yao L, Lü Q T, et al. Ultra-fast laser milling technology for VITA MARK Ⅱ dental glass ceramics[J]. Laser & Optoelectronics Progress, 2020, 57(5): 051402.

[11] Yu J C, Jiang L, Yan J F, et al. Microprocessing on single protein crystals using femtosecond pulse laser[J]. ACS Biomaterials Science & Engineering, 2020, 6(11): 6445-6452.

[12] Qiao M, Yan J F, Gao B. Ablation of TiO2 surface with a double-pulse femtosecond laser[J]. Optics Communications, 2019, 441: 49-54.

[13] Qiao M, Yan J F, Qu L T, et al. Femtosecond laser induced phase transformation of TiO2 with exposed reactive facets for improved photoelectrochemistry performance[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41250-41258.

[14] Bloembergen N. A brief history of light breakdown[J]. Journal of Nonlinear Optical Physics & Materials, 1997, 6(4): 377-385.

[15] Stuart B C, Feit M D, Rubenchik A M, et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses[J]. Physical Review Letters, 1995, 74(12): 2248-2251.

[16] Apostolopoulos V, Laversenne L, Colomb T, et al. Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti 3+: sapphire[J]. Applied Physics Letters, 2004, 85(7): 1122-1124.

[17] Ramirez L P R, Heinrich M, Richter S, et al. Tuning the structural properties of femtosecond-laser-induced nanogratings[J]. Applied Physics A, 2010, 100(1): 1-6.

[18] Juodkazis S, Vailionis A, Gamaly E G, et al. Femtosecond laser-induced confined microexplosion: tool for creation high-pressure phases[J]. MRS Advances, 2016, 1(17): 1149-1155.

[19] Miura K, Qiu J R, Inouye H, et al. Photowritten optical waveguides in various glasses with ultrashort pulse laser[J]. Applied Physics Letters, 1997, 71(23): 3329-3331.

[20] Shimotsuma Y, Kazansky P G, Qiu J R, et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 2003, 91(24): 247405.

[21] Juodkazis S, Nishimura K, Tanaka S, et al. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures[J]. Physical Review Letters, 2006, 96(16): 166101.

[22] Homoelle D, Wielandy S, Gaeta A L, et al. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses[J]. Optics Letters, 1999, 24(18): 1311-1313.

[23] Schaffer C B, Brodeur A, García J F, et al. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy[J]. Optics Letters, 2001, 26(2): 93-95.

[24] Chan J W, Huser T R, Risbud S H, et al. Waveguide fabrication in phosphate glasses using femtosecond laser pulses[J]. Applied Physics Letters, 2003, 82(15): 2371-2373.

[25] Bhardwaj V R, Simova E, Corkum P B, et al. Femtosecond laser-induced refractive index modification in multicomponent glasses[J]. Journal of Applied Physics, 2005, 97(8): 083102.

[26] Bhuyan M K, Velpula P K, Colombier J P, et al. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams[J]. Applied Physics Letters, 2014, 104(2): 021107.

[27] Streltsov A M, Borrelli N F. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses[J]. Optics Letters, 2001, 26(1): 42-43.

[28] Fertein E, Przygodzki C, Delbarre H, et al. Refractive-index changes of standard telecommunication fiber through exposure to femtosecond laser pulses at 810 cm[J]. Applied Optics, 2001, 40(21): 3506-3508.

[29] Yamada K, Watanabe W, Toma T, et al. In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses[J]. Optics Letters, 2001, 26(1): 19-21.

[30] Sudrie L, Franco M, Prade B, et al. Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses[J]. Optics Communications, 1999, 171(4/5/6): 279-284.

[31] Kazansky P G, Inouye H, Mitsuyu T, et al. Anomalous anisotropic light scattering in Ge-doped silica glass[J]. Physical Review Letters, 1999, 82(10): 2199-2202.

[32] Qiu J R, Kazanski P G, Si J H, et al. Memorized polarization-dependent light scattering in rare-earth-ion-doped glass[J]. Applied Physics Letters, 2000, 77(13): 1940-1942.

[33] Hnatovsky C, Taylor R S, Simova E, et al. Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching[J]. Applied Physics A, 2006, 84(1/2): 47-61.

[34] Gamaly E G, Juodkazis S, Nishimura K, et al. Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation[J]. Physical Review B, 2006, 73(21): 214101.

[35] Juodkazis S, Misawa H, Hashimoto T, et al. Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids[J]. Applied Physics Letters, 2006, 88(20): 201909.

[36] Buividas R, Gervinskas G, Tadich A, et al. Phase transformation in laser-induced micro-explosion in olivine (Fe, Mg)2SiO4[J]. Advanced Engineering Materials, 2014, 16(6): 767-773.

[37] Chan J W, Huser T, Risbud S, et al. Structural changes in fused silica after exposure to focused femtosecond laser pulses[J]. Optics Letters, 2001, 26(21): 1726-1728.

[38] Hirao K, Miura K. Writing waveguides and gratings in silica and related materials by a femtosecond laser[J]. Journal of Non-Crystalline Solids, 1998, 239(1/2/3): 91-95.

[39] MisawaH. 3D laser microfabrication: principles and applications[M]. Hoboken :John Wiley & Sons, Inc., 1999.

[40] Richter S, Heinrich M, Döring S, et al. Nanogratings in fused silica: formation, control, and applications[J]. Journal of Laser Applications, 2012, 24(4): 042008.

[41] Schaffer C B, García J F, Mazur E. Bulk heating of transparent materials using a high-repetition-rate femtosecond laser[J]. Applied Physics A: Materials Science & Processing, 2003, 76(3): 351-354.

[42] Eaton S, Zhang H B, Herman P, et al. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate[J]. Optics Express, 2005, 13(12): 4708-4716.

[43] Sakakura M, Shimizu M, Shimotsuma Y, et al. Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses[J]. Applied Physics Letters, 2008, 93(23): 231112.

[44] Efimov O M, Gabel K, Garnov S V, et al. Color-center generation in silicate glasses exposed to infrared femtosecond pulses[J]. Journal of the Optical Society of America B, 1998, 15(1): 193-199.

[45] Streltsov A M, Borrelli N F. Study of femtosecond-laser-written waveguides in glasses[J]. Journal of the Optical Society of America B, 2002, 19(10): 2496-2504.

[46] Dekker P, Ams M, Marshall G D, et al. Annealing dynamics of waveguide Bragg gratings: evidence of femtosecond laser induced colour centres[J]. Optics Express, 2010, 18(4): 3274-3283.

[47] Bricchi E, Kazansky P G. Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass[J]. Applied Physics Letters, 2006, 88(11): 111119.

[48] Lancry M, Poumellec B, Canning J, et al. Ultrafast nanoporous silica formation driven by femtosecond laser irradiation[J]. Laser & Photonics Reviews, 2013, 7(6): 953-962.

[49] Oliveira V, Sharma S P, Herrero P, et al. Transformations induced in bulk amorphous silica by ultrafast laser direct writing[J]. Optics Letters, 2013, 38(23): 4950-4953.

[50] Taylor R, Hnatovsky C, Simova E. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass[J]. Laser & Photonics Reviews, 2008, 2(1/2): 26-46.

[51] HalloL, MézelC, BourgeadeA, et al. Laser-matter interaction in transparent materials: confined micro-explosion and jet formation[M] // Hall T J, Gaponenko S V, Paredes S A. Extreme photonics & applications. NATO science for peace and security series B: physics and biophysics. Dordrecht: Springer, 2010: 121- 146.

[52] Morris J M. MacKenzie M D, Petersen C R, et al. Ge22As20Se58 glass ultrafast laser inscribed waveguides for mid-IR integrated optics[J]. Optical Materials Express, 2018, 8(4): 1001.

[53] Voigtländer C, Richter D, Thomas J, et al. Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses[J]. Applied Physics A, 2011, 102(1): 35-38.

[54] Qiao M, Wang H M, Lu H J, et al. Micro/nano processing of natural silk fibers with near-field enhanced ultrafast laser[J]. Science China Materials, 2020, 63(7): 1300-1309.

[55] Yao Z L, Jiang L, Li X W, et al. Non-diffraction-length, tunable, Bessel-like beams generation by spatially shaping a femtosecond laser beam for high-aspect-ratio micro-hole drilling[J]. Optics Express, 2018, 26(17): 21960-21968.

[56] Sakakura M, Sawano T, Shimotsuma Y, et al. Fabrication of three-dimensional 1×4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam[J]. Optics Express, 2010, 18(12): 12136-12143.

[57] Kifle E, Loiko P, Romero C, et al. Femtosecond-laser-written Ho∶ KGd(WO4)2 waveguide laser at 2.1μm[J]. Optics Letters, 2019, 44(7): 1738-1741.

[58] Bérubé J P, Lapointe J, Dupont A, et al. Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire[J]. Optics Letters, 2019, 44(1): 37-40.

[59] Paipulas D, Kudriašov V, Malinauskas M, et al. Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses[J]. Applied Physics A, 2011, 104(3): 769-773.

[60] Zhao M J, Hu J, Jiang L, et al. Controllable high-throughput high-quality femtosecond laser-enhanced chemical etching by temporal pulse shaping based on electron density control[J]. Scientific Reports, 2015, 5(1): 13202.

[61] Beresna M. Gecevi c̬ius M, Kazansky P G. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass[J]. Optical Materials Express, 2011, 1(4): 783-795.

[62] Sakakura M, Lei Y H, Wang L, et al. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass[J]. Light: Science & Applications, 2020, 9: 15.

[63] Götte N, Winkler T, Meinl T, et al. Temporal Airy pulses for controlled high aspect ratio nanomachining of dielectrics[J]. Optica, 2016, 3(4): 389.

[64] Roth G L, Rung S, Esen C, et al. Microchannels inside bulk PMMA generated by femtosecond laser using adaptive beam shaping[J]. Optics Express, 2020, 28(4): 5801-5811.

[65] Ródenas A, Gu M, Corrielli G, et al. Three-dimensional femtosecond laser nanolithography of crystals[J]. Nature Photonics, 2019, 13(2): 105-109.

[66] Li Y, Itoh K, Watanabe W, et al. Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses[J]. Optics Letters, 2001, 26(23): 1912-1914.

[67] Maselli V, Osellame R, Cerullo G, et al. Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching[J]. Applied Physics Letters, 2006, 88(19): 191107.

[68] Zhao X, Shin Y C. Femtosecond laser drilling of high-aspect ratio microchannels in glass[J]. Applied Physics A, 2011, 104(2): 713-719.

[69] Jiang L, Liu P, Yan X, et al. High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains[J]. Optics Letters, 2012, 37(14): 2781-2783.

[70] Wang Z, Jiang L, Li X W, et al. High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser Bessel-beam-assisted chemical etching[J]. Optics Letters, 2018, 43(1): 98-101.

[71] Xia B, Jiang L, Li X, et al. Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling[J]. Optics Express, 2015, 23(21): 27853-27864.

[72] Xie Q, Li X W, Jiang L, et al. High-aspect-ratio, high-quality microdrilling by electron density control using a femtosecond laser Bessel beam[J]. Applied Physics A, 2016, 122(2): 1-8.

[73] Ito Y, Yoshizaki R, Miyamoto N, et al. Ultrafast and precision drilling of glass by selective absorption of fiber-laser pulse into femtosecond-laser-induced filament[J]. Applied Physics Letters, 2018, 113(6): 061101.

[74] Karimelahi S, Abolghasemi L, Herman P R. Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser[J]. Applied Physics A, 2014, 114(1): 91-111.

[75] Yoshiki K. High-aspect ratio laser drilling of glass assisted by supercritical carbon dioxide[J]. Proceedings of SPIE, 2017, 1009: 100921K.

[76] Bhuyan M K, Courvoisier F, Lacourt P A, et al. High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams[J]. Optics Express, 2010, 18(2): 566-574.

[77] Sun Q, Saliminia A, Théberge F, et al. Microchannel fabrication in silica glass by femtosecond laser pulses with different central wavelengths[J]. Journal of Micromechanics & Microengineering, 2008, 18(3): 035039.

[78] Hwang D J, Choi T Y, Grigoropoulos C P. Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass[J]. Applied Physics A, 2004, 79(3): 605-612.

[79] Kiyama S, Matsuo S, Hashimoto S, et al. Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates[J]. Journal of Physical Chemistry C, 2015, 113(27): 11560-11566.

[80] Zhang J. C̬erkauskaité A, Drevinskas R, et al. Eternal 5D data storage by ultrafast laser writing in glass[J]. Proceedings of SPIE, 2016, 9736: 97360U.

[81] Huang X, Guo Q, Yang D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J]. Nature Photonics, 2020, 14(2): 1-7.

[82] Castro T D, Fares H, Khalil A A, et al. Femtosecond laser micro-patterning of optical properties and functionalities in novel photosensitive silver-containing fluorophosphate glasses[J]. Journal of Non-Crystalline Solids, 2019, 517(517): 51-56.

[83] Miyamoto I, Cvecek K, Okamoto Y, et al. Internal modification of glass by ultrashort laser pulse and its application to microwelding[J]. Applied Physics A, 2014, 114(1): 187-208.

[84] Penilla E H. Devia-Cruz L F, Wieg A T, et al. Ultrafast laser welding of ceramics[J]. Science, 2019: 803-808.

李佳群, 闫剑锋, 李欣, 曲良体. 透明介质材料的超快激光微纳加工研究进展[J]. 中国激光, 2021, 48(2): 0202019. Jiaqun Li, Jianfeng Yan, Xin Li, Liangti Qu. Research Advancement on Ultrafast Laser Microprocessing of Transparent Dielectrics[J]. Chinese Journal of Lasers, 2021, 48(2): 0202019.

本文已被 17 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!