中国激光, 2021, 48 (4): 0401003, 网络出版: 2021-02-24   

激光相干合成的研究进展:2011—2020 下载: 2884次封底文章特邀综述

Review of Coherent Laser Beam Combining Research Progress in the Past Decade
作者单位
国防科技大学前沿交叉学科学院, 湖南 长沙 410073
引用该论文

周朴, 粟荣涛, 马阎星, 马鹏飞, 吴坚, 李灿, 姜曼. 激光相干合成的研究进展:2011—2020[J]. 中国激光, 2021, 48(4): 0401003.

Pu Zhou, Rongtao Su, Yanxing Ma, Pengfei Ma, Jian Wu, Can Li, Man Jiang. Review of Coherent Laser Beam Combining Research Progress in the Past Decade[J]. Chinese Journal of Lasers, 2021, 48(4): 0401003.

参考文献

[1] 刘泽金, 周朴, 王小林, 等. 激光相干合成的历史、现状与发展趋势[J]. 中国激光, 2010, 37(9): 2221-2234.

    Liu Z J, Zhou P, Wang X L, et al. The history, development and tend of coherent combining of laser beams[J]. Chinese Journal of Lasers, 2010, 37(9): 2221-2234.

[2] McNaught SJ, Asman CP, InjeyanH, et al. 100-kW coherently combined Nd∶YAG MOPA laser array[C]∥Frontiers in Optics 2009, 2009: FThD2.

[3] 粟荣涛, 周朴, 张鹏飞, 等. 超短脉冲光纤激光相干合成[J]. 红外与激光工程, 2018, 47(1): 0103001.

    Su R T, Zhou P, Zhang P F, et al. Review on the progress in coherent beam combining of ultra-short fiber lasers[J]. Infrared and Laser Engineering, 2018, 47(1): 0103001.

[4] BrignonA. Coherent laser beam combining[M]. Weinheim: John Wiley & Sons Ltd., 2013.

[5] 刘泽金, 周朴, 许晓军, 等. 高平均功率光纤激光相干合成[M]. 北京: 国防工业出版社, 2016.

    Liu ZJ, ZhouP, Xu XJ, et al.Coherent beam combining of high average power fiber lasers[M]. Beijing: National Defense Industry Press, 2016.

[6] 程勇. 固体激光相干合成技术[M]. 北京: 科学出版社, 2016.

    ChengY. Coherent combining of solid laser[M]. Beijing: Science Press, 2016.

[7] Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7(3): 172-225.

[8] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nature Photonics, 2013, 7(4): 258-261.

[9] Breitkopf S, Eidam T, Klenke A, et al. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities[J]. Light: Science & Applications, 2014, 3(10): e211.

[10] Shaykin A, Kostyukov I, Sergeev A, et al. Prospects of PEARL 10 and XCELS laser facilities[J]. The Review of Laser Engineering, 2014, 42(2): 141.

[11] Kong H J, Park S, Cha S, et al. Conceptual design of the Kumgang laser: a high-power coherent beam combination laser using SC-SBS-PCMs towards a dream laser[J]. High Power Laser Science and Engineering, 2015, 3: e1.

[12] Liu Z J, Jin X X, Su R T, et al. Development status of high power fiber lasers and their coherent beam combination[J]. Science China Information Sciences, 2019, 62(4): 041301.

[13] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266.

[14] Zhu J J, Zhou P, Ma Y X, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 2011, 19(19): 18645-18654.

[15] Otto H J, Jauregui C, Limpert J, et al. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality[J]. Proceedings of SPIE, 2016, 9728: 97280E.

[16] Ke W W, Wang X J, Bao X F, et al. Thermally induced mode distortion and its limit to power scaling of fiber lasers[J]. Optics Express, 2013, 21(12): 14272-14281.

[17] Zervas M N. Transverse mode instability, thermal lensing and power scaling in Yb 3+-doped high-power fiber amplifiers[J]. Optics Express, 2019, 27(13): 19019-19041.

[18] 王小林, 周朴, 粟荣涛, 等. 高功率光纤激光相干合成的现状、 趋势与挑战[J]. 中国激光, 2017, 44(2): 0201001.

    Wang X L, Zhou P, Su R T, et al. Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201001.

[19] 刘泽金, 周朴, 王小林, 等. 9路光纤激光相干合成千瓦级高功率输出[J]. 中国激光, 2011, 38(1): 0102001-5.

    Liu Z J, Zhou P, Wang X L, et al. 9-channel fiber laser coherent synthesis kilowatt-level high power output[J]. Chinese Journal of Lasers, 2011, 38(1): 0102001-5.

[20] 周朴, 黄良金, 冷进勇, 等. 高功率双包层光纤激光器: 30周年的发展历程[J]. 中国科学: 技术科学, 2020, 50(2): 123-135.

    Zhou P, Huang L J, Leng J Y, et al. High-power double-cladding fiber lasers: a 30-year overview[J]. Scientia Sinica (Technologica), 2020, 50(2): 123-135.

[21] Lai W C, Ma P F, Ma P F, et al. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber[J]. Optics Express, 2020, 28(14): 20908-20919.

[22] 郑也, 李磐, 朱占达, 等. 高功率窄线宽光纤激光器研究进展[J]. 激光与光电子学进展, 2018, 55(8): 080002.

    Zheng Y, Li P, Zhu Z D, et al. Progress in high-power narrow-linewidth fiber lasers[J]. Laser & Optoelectronics Progress, 2018, 55(8): 080002.

[23] 来文昌, 马鹏飞, 肖虎, 等. 高功率窄线宽光纤激光技术[J]. 强激光与粒子束, 2020, 32(12): 121001.

    Lai W C, Ma P F, Xiao H, et al. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 2020, 32(12): 121001.

[24] Wan P, Yang L M, Liu J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Optics Express, 2013, 21(24): 29854-29859.

[25] IPG Photonics Corporation.YLS-ECO, 1--10 kW ytterbium CW laser systems [EB/OL]. [2020-10-03].https:∥www.ipgphotonics.com/en/products/lasers/high-power-cw-fiber-lasers/1-micron/yls-eco-1-10-kw.

[26] IPG PhotonicsCorporation. The world's smallest kW-class fiber lasers [EB/OL]. [2020-10-03].https:∥www.ipgphotonics.com/en/products/lasers/mid-power-cw-fiber-lasers/1-micron/ylr-u-series.

[27] Su R T, Zhou P, Wang X L, et al. Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers[J]. Optics Letters, 2012, 37(4): 497-499.

[28] Su R T, Zhou P, Wang X L, et al. Active coherent beam combining of a five-element, 800 W nanosecond fiber amplifier array[J]. Optics Letters, 2012, 37(19): 3978-3980.

[29] Ma P F, Tao R M, Wang X L, et al. Coherent polarization beam combination of four mode-locked fiber MOPAs in picosecond regime[J]. Optics Express, 2014, 22(4): 4123-4130.

[30] Klenke A, Müller M, Stark H, et al. Coherent beam combination of ultrafast fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-9.

[31] Lombard L, Azarian A, Cadoret K, et al. Coherent beam combination of narrow-linewidth 1.5 μm fiber amplifiers in a long-pulse regime[J]. Optics Letters, 2011, 36(4): 523-525.

[32] Zhou P, Wang X L, Ma Y X, et al. Active and passive coherent beam combining of thulium-doped fiber lasers[J]. Proceedings of SPIE, 2010, 7843: 784307.

[33] Goodno G D, Komine H. McNaught S J, et al. Coherent combination of high-power, zigzag slab lasers[J]. Optics Letters, 2006, 31(9): 1247-1249.

[34] Goodno G D, Asman C P, Anderegg J, et al. Brightness-scaling potential of actively phase-locked solid-state laser arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 460-472.

[35] Marmo J, Injeyan H, Komine H, et al. Joint high power solid state laser program advancements at Northrop Grumman[J]. Proceedings of SPIE, 2009, 7195: 719507.

[36] 高清松, 胡浩, 裴正平, 等. 10 kW级固体板条激光放大器设计与实验研究[J]. 中国激光, 2012, 39(2): 0202001.

    Gao Q S, Hu H, Pei Z P, et al. Design and experiment study of all-solid slab laser amplifier with laser power of 10 kW[J]. Chinese Journal of Lasers, 2012, 39(2): 0202001.

[37] Sun L C, Guo Y D, Shao C F, et al. 10.8 kW, 2.6 times diffraction limited laser based on a continuous wave Nd∶YAG oscillator and an extra-cavity adaptive optics system[J]. Optics Letters, 2018, 43(17): 4160-4163.

[38] Guo Y D, Peng Q J, Bo Y, et al. 24.6 kW near diffraction limit quasi-continuous-wave Nd∶YAG slab laser based on a stable-unstable hybrid cavity[J]. Optics Letters, 2020, 45(5): 1136-1139.

[39] Chen X M, Xu L, Hu H, et al. High-efficiency, high-average-power, CW Yb∶YAG zigzag slab master oscillator power amplifier at room temperature[J]. Optics Express, 2016, 24(21): 24517-24523.

[40] Wang D, Du Y L, Wu Y C, et al. 20 kW class high-beam-quality CW laser amplifier chain based on a Yb∶YAG slab at room temperature[J]. Optics Letters, 2018, 43(16): 3838-3841.

[41] Xu L, Wu Y C, Du Y L, et al. High brightness laser based on Yb∶YAG MOPA chain and adaptive optics system at room temperature[J]. Optics Express, 2018, 26(11): 14592-14600.

[42] 李密, 尚建力, 周唐建, 等. 室温下零声子线抽运Yb∶YAG板条放大器的理论研究[J]. 光学学报, 2019, 39(2): 0214003.

    Li M, Shang J L, Zhou T J, et al. Theoretical research on zero-phonon line pumped Yb∶YAG slab amplifier at room-temperature[J]. Acta Optica Sinica, 2019, 39(2): 0214003.

[43] Huang L, Zheng Y M, Guo Y D, et al. 21.2 kW, 1.94 times diffraction-limit quasi-continuous-wave laser based on a multi-stage, power-scalable and adaptive optics controlled Yb∶YAG master-oscillator-power-amplifier system[J]. Chinese Optics Letters, 2020, 18(6): 061402.

[44] Ganija M, Ottaway D, Veitch P, et al. Cryogenic, high power, near diffraction limited, Yb∶YAG slab laser[J]. Optics Express, 2013, 21(6): 6973-6978.

[45] 郎兴凯, 贾鹏, 陈泳屹, 等. 窄线宽半导体激光器研究进展[J]. 中国科学: 信息科学, 2019, 49(6): 649-662.

    Lang X K, Jia P, Chen Y Y, et al. Advances in narrow linewidth diode lasers[J]. Scientia Sinica (Informationis), 2019, 49(6): 649-662.

[46] 陈良惠, 杨国文, 刘育衔. 半导体激光器研究进展[J]. 中国激光, 2020, 47(5): 0500001.

    Chen L H, Yang G W, Liu Y X. Development of semiconductor lasers[J]. Chinese Journal of Lasers, 2020, 47(5): 0500001.

[47] 张俊, 陈泳屹, 秦莉, 等. 高功率、高光束质量半导体激光器研究进展[J]. 科学通报, 2017, 62(32): 3719-3728.

    Zhang J, Chen Y Y, Qin L, et al. Advances in high power high beam quality diode lasers[J]. Chinese Science Bulletin, 2017, 62(32): 3719-3728.

[48] Architecture for diode high energy laser systems (ADHELS) [EB/OL].[2020-10-03].http:∥www. mtosymposium. org/2007/posters/Energy/47_Mangano_ADHELS.pdf.

[49] Levy J L, Roh K. Coherent array of 900 semiconductor laser amplifiers[J]. Proceedings of SPIE, 1995, 2382: 58-69.

[50] Bachmann A, Lauer C, Furitsch M, et al. Recent brightness improvements of 976 nm high power laser bars[J]. Proceedings of SPIE, 2017, 1008: 1008602.

[51] Kanskar M, Bao L, Chen Z, et al. Continued improvement in reduced-mode (REM) diodes enable 272 W from 105 μm 0.15 NA beam[J]. Proceedings of SPIE, 2017, 1008: 1008609.

[52] Demir A, Peters M, Duesterberg R, et al. 29.5 W continuous wave output from 100 mm wide laser diode[J]. Proceedings of SPIE, 2015, 9348: 93480G.

[53] Kaifuchi Y, Yamagata Y, Nogawa R, et al. Ultimate high power operation of 9xx-nm single emitter broad stripe laser diodes[J]. Proceedings of SPIE, 2017, 1008: 100860D.

[54] Gapontsev V, Moshegov N, Berezin I, et al. Highly-efficient high-power pumps for fiber lasers[J]. Proceedings of SPIE, 2017, 1008: 1008604.

[55] Kaifuchi Y, Yoshida K, Yamagata Y, et al. Enhanced power conversion efficiency in 900-nm range single emitter broad stripe laser diodes maintaining high power operability[J]. Proceedings of SPIE, 2019, 1090: 109000F.

[56] Huang R K, Chann B, Burgess J, et al. Teradiode's high brightness semiconductor lasers[J]. Proceedings of SPIE, 2016, 9730: 97300C.

[57] Huang R K, Chann B, Glenn J D. Ultra-high brightness wavelength-stabilized kW-class fiber coupled diode laser[J]. Proceedings of SPIE, 2011, 7918: 791810.

[58] Bochove E J, Shakir S A. Analysis of a spatial-filtering passive fiber laser beam combining system[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 320-327.

[59] Yang Y F, Liu H K, Zheng Y, et al. Dammann-grating-based passive phase locking by an all-optical feedback loop[J]. Optics Letters, 2014, 39(3): 708-710.

[60] Cheng Y, Liu X, Liu Y, et al. Coherent characteristics of solid-state lasers with corner cubes[J]. Applied Optics, 2014, 53(15): 3267-3272.

[61] Li J F, Duan K L, Wang Y S, et al. High-power coherent beam combining of two photonic crystal fiber lasers[J]. IEEE Photonics Technology Letters, 2008, 20(11): 888-890.

[62] Corcoran C J, Durville F. Experimental demonstration of a phase-locked laser array using a self-Fourier cavity[J]. Applied Physics Letters, 2005, 86(20): 201118.

[63] Huo Y M, Cheo P K, King G G. Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier[J]. Optics Express, 2004, 12(25): 6230-6239.

[64] Michaille L, Taylor D M, Bennett C R, et al. Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area[J]. Optics Letters, 2008, 33(1): 71-73.

[65] Bruesselbach H, Jones D C, Mangir M S, et al. Self-organized coherence in fiber laser arrays[J]. Optics Letters, 2005, 30(11): 1339-1341.

[66] Wang B S, Mies E, Minden M, et al. All-fiber 50 W coherently combined passive laser array[J]. Optics Letters, 2009, 34(7): 863-865.

[67] Zhou P, Wang X L, Ma Y X, et al. Stable coherent beam combination by active phasing a mutual injection-locked fiber laser array[J]. Optics Letters, 2010, 35(7): 950-952.

[68] Shardlow P C, Damzen M J. Phase conjugate self-organized coherent beam combination: a passive technique for laser power scaling[J]. Optics Letters, 2010, 35(7): 1082-1084.

[69] Park S, Cha S, Oh J, et al. Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation[J]. Optics Express, 2016, 24(8): 8641-8646.

[70] 周军, 何兵, 薛宇豪, 等. 高功率光纤激光阵列被动相干组束技术研究[J]. 光学学报, 2011, 31(9): 0900129.

    Zhou J, He B, Xue Y H, et al. Study on passive coherent beam combination technology of high power fiber laser arrays[J]. Acta Optica Sinica, 2011, 31(9): 0900129.

[71] Xiao R, Hou J, Liu M, et al. Coherent combining technology of master oscillator power amplifier fiber arrays[J]. Optics Express, 2008, 16(3): 2015-2022.

[72] MüllerM, KlenkeA, StarkH, et al. 16 channel coherently-combined ultrafast fiber laser[C]∥Advanced Solid State Lasers 2017, 2017, AW4A. 3.

[73] Klenke A, Seise E, Demmler S, et al. Coherently-combined two channel femtosecond fiber CPA system producing 3 mJ pulse energy[J]. Optics Express, 2011, 19(24): 24280-24285.

[74] Bourderionnet J, Bellanger C, Primot J, et al. Collective coherent phase combining of 64 fibers[J]. Optics Express, 2011, 19(18): 17053-17058.

[75] Antier M, Bourderionnet J, Larat C, et al. kHz closed loop interferometric technique for coherent fiber beam combining[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 182-187.

[76] Kabeya D, Kermene V, Fabert M, et al. Active coherent combining of laser beam arrays by means of phase-intensity mapping in an optimization loop[J]. Optics Express, 2015, 23(24): 31059-31068.

[77] Zhou P, Liu Z, Wang X, et al. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 248-256.

[78] Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688.

[79] Shay T M, Benham V, Baker J T, et al. Self-synchronous and self-referenced coherent beam combination for large optical arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 480-486.

[80] McNaught S J, Thielen P A, Adams L N, et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 174-181.

[81] Ma Y X, Zhou P, Wang X L, et al. Coherent beam combination with single frequency dithering technique[J]. Optics Letters, 2010, 35(9): 1308-1310.

[82] 粟荣涛, 周朴, 王小林, 等. 32路光纤激光相干阵列的相位锁定[J]. 强激光与粒子束, 2014, 26(11): 110101.

    Su R T, Zhou P, Wang X L, et al. Phase locking of a coherent array of 32 fiber lasers[J]. High Power Laser and Particle Beams, 2014, 26(11): 110101.

[83] Weyrauch T, Vorontsov M, Mangano J, et al. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km[J]. Optics Letters, 2016, 41(4): 840-843.

[84] Vorontsov M A, Weyrauch T. High-power lasers for directed-energy applications: comment[J]. Applied Optics, 2016, 55(35): 9950-9953.

[85] SuR, XiJ, ChangH, et al. Coherent combing of 60 fiber lasers using stochastic parallel gradient descent algorithm[C]∥Applications of Lasers for Sensing and Free Space Communications 2019, 2019, JW2A. 1.

[86] 马鹏飞, 马阎星, 粟荣涛, 等. 8 kW级光纤激光优质高效相干合成[J]. 红外与激光工程, 2020, 49(5): 20190577.

    Ma P F, Ma Y X, Su R T, et al. High-quality and efficient coherent synthesis of 8 kW fiber laser[J]. Infrared and Laser Engineering, 2020, 49(5): 20190577.

[87] 常洪祥, 常琦, 侯天悦, 等. 百束规模光纤激光相干合成[J]. 中国激光, 2020, 47(9): 0916002.

    Chang H X, Chang Q, Hou T Y, et al. Coherent combining of hundred beams of fiber laser[J]. Chinese Journal of Lasers, 2020, 47(9): 0916002.

[88] FloresA. Coherent beam combining of fiber amplifiers in a kW regime[C]∥Conference on Lasers and Electro-Optics, 2011.

[89] Flores A, Ehrehreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[J]. Proceedings of SPIE, 2016, 9728: 97281Y.

[90] Müller M, Klenke A, Steinkopff A, et al. 3.5 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2018, 43(24): 6037-6040.

[91] Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086.

[92] Ma Y, Wang X, Leng J, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics Letters, 2011, 36(6): 951-953.

[93] 刘泽金, 周朴, 马鹏飞, 等. 4路高功率窄线宽、线偏振光纤放大器相干偏振合成实现5 kW级高亮度激光输出[J]. 中国激光, 2017, 44(4): 0415004.

    Liu Z J, Zhou P, Ma P F, et al. 4 channels of high-power narrow linewidth, linear polarization fiber amplifiers coherent polarization synthesis to achieve 5 kW high-brightness laser output[J]. Chinese Journal of Lasers, 2017, 44(4): 0415004.

[94] Huang Z M, Tang X, Luo Y Q, et al. Active phase locking of thirty fiber channels using multilevel phase dithering method[J]. The Review of Scientific Instruments, 2016, 87(3): 033109.

[95] Fsaifes I, Daniault L, Bellanger S, et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 2020, 28(14): 20152-20161.

[96] Kabeya D, Kermène V, Fabert M, et al. Efficient phase-locking of 37 fiber amplifiers by phase-intensity mapping in an optimization loop[J]. Optics Express, 2017, 25(12): 13816-13821.

[97] Ma Y X, Zhou P, Wang X L, et al. Active phase locking of fiber amplifiers using sine-cosine single-frequency dithering technique[J]. Applied Optics, 2011, 50(19): 3330-3336.

[98] Azarian A, Bourdon P, Lombard L, et al. Orthogonal coding methods for increasing the number of multiplexed channels in coherent beam combining[J]. Applied Optics, 2014, 53(8): 1493-1502.

[99] Jiang M, Su R T, Zhang Z X, et al. Coherent beam combining of fiber lasers using a CDMA-based single-frequency dithering technique[J]. Applied Optics, 2017, 56(15): 4255-4260.

[100] 罗成, 粟荣涛, 王小林, 等. 自适应并行梯度随机下降算法及其在相干合成中的应用[J]. 光学学报, 2014, 34(s1): s101006.

    Luo C, Su R T, Wang X L, et al. Adaptive stochastic parallel gradient descent algorithm and its application in coherent beam combining[J]. Acta Optica Sinica, 2014, 34(s1): s101006.

[101] Hou T Y, An Y, Chang Q, et al. Deep-learning-based phase control method for tiled aperture coherent beam combining systems[J]. High Power Laser Science and Engineering, 2019, 7: e59.

[102] Chang Q, Su R T, Hou T Y, et al. Coherent beam combination based on particle swarm optimization algorithm[J]. Proceedings of SPIE, 2019, 1133: 1133319.

[103] Liu R Q, Peng C, Wu W S, et al. Coherent beam combination of multiple beams based on near-field angle modulation[J]. Optics Express, 2018, 26(2): 2045-2053.

[104] Liu R Q, Peng C, Liang X Y, et al. Coherent beam combination far-field measuring method based on amplitude modulation and deep learning[J]. Chinese Optics Letters, 2020, 18(4): 041402.

[105] Tünnermann H, Shirakawa A. Deep reinforcement learning for coherent beam combining applications[J]. Optics Express, 2019, 27(17): 24223-24230.

[106] Su R T, Zhou P, Wang X L, et al. High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 206-218.

[107] Su R T, Zhang Z X, Zhou P, et al. Coherent beam combining of a fiber lasers array based on cascaded phase control[J]. IEEE Photonics Technology Letters, 2016, 28(22): 2585-2588.

[108] Ahn H K, Kong H J. Cascaded multi-dithering theory for coherent beam combining of multiplexed beam elements[J]. Optics Express, 2015, 23(9): 12407-12413.

[109] Wang X, Wang X L, Zhou P, et al. 350-W coherent beam combining of fiber amplifiers with tilt-tip and phase-locking control[J]. IEEE Photonics Technology Letters, 2012, 24(19): 1781-1784.

[110] Beresnev L A, Vorontsov M A. Design of adaptive fiber optics collimator for free-space communication laser transceiver[J]. Proceedings of SPIE, 2005, 5895: 58950R.

[111] Weyrauch T, Vorontsov M A, Carhart G W, et al. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Optics Letters, 2011, 36(22): 4455-4457.

[112] Geng C, Li X Y, Zhang X J, et al. Coherent beam combination of an optical array using adaptive fiber optics collimators[J]. Optics Communications, 2011, 284(24): 5531-5536.

[113] 耿超, 杨燕, 李枫, 等. 光纤激光相干合成研究进展[J]. 光电工程, 2018, 45(3): 170692.

    Geng C, Yang Y, Li F, et al. Research progress of fiber laser coherent combining[J]. Opto-Electronic Engineering, 2018, 45(3): 170692.

[114] Zhi D, Ma Y X, Ma P F, et al. Adaptive fiber optics collimator based on flexible hinges[J]. Applied Optics, 2014, 53(24): 5434-5438.

[115] Zhi D, Ma P F, Ma Y X, et al. Novel adaptive fiber-optics collimator for coherent beam combination[J]. Optics Express, 2014, 22(25): 31520-31528.

[116] Zhi D, Zhang Z X, Ma Y X, et al. Realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system[J]. Scientific Reports, 2017, 7: 2199.

[117] Le Dortz J, Heilmann A, Antier M, et al. Highly scalable femtosecond coherent beam combining demonstrated with 19 fibers[J]. Optics Letters, 2017, 42(10): 1887-1890.

[118] Geng C, Luo W, Tan Y, et al. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control[J]. Optics Express, 2013, 21(21): 25045-25055.

[119] 支冬, 马阎星, 马鹏飞, 等. 公里级湍流大气环境下光纤激光高效相干合成[J]. 红外与激光工程, 2019, 48(10): 1005007.

    Zhi D, Ma Y X, Ma P F, et al. Efficient coherent beam combining of fiber laser array through km-scale turbulent atmosphere[J]. Infrared and Laser Engineering, 2019, 48(10): 1005007.

[120] Yang Y, Geng C, Li F, et al. Coherent polarization beam combining approach based on polarization controlling in fiber devices[J]. IEEE Photonics Technology Letters, 2017, 29(12): 945-948.

[121] 尤阳, 漆云凤, 何兵, 等. 光纤激光主动偏振控制技术的原理与进展[J]. 激光与光电子学进展, 2019, 56(10): 100001.

    You Y, Qi Y F, He B, et al. Principles and development of active polarization control technology for fiber lasers[J]. Laser & Optoelectronics Progress, 2019, 56(10): 100001.

[122] 王鹏, 尚亚萍, 李霄, 等. 基于锥棱镜和波片组合实现的高效偏振转换系统[J]. 中国激光, 2015, 42(s1): s116002.

    Wang P, Shang Y P, Li X, et al. High efficient polarization-converting system based on combination of axicon and wave plate[J]. Chinese Journal of Lasers, 2015, 42(s1): s116002.

[123] 董苏惠, 王小林, 粟荣涛, 等. 基于偏振锁相的非线偏-线偏光转换技术研究[J]. 中国激光, 2016, 43(2): 0202006.

    Dong S H, Wang X L, Su R T, et al. Research on conversion technology from non-polarized to linearly polarized laser based on principle of polarization phase locking[J]. Chinese Journal of Lasers, 2016, 43(2): 0202006.

[124] 沈辉, 全昭, 杨依枫, 等. 基于光学零差偏振探测和锁相的合束激光偏振控制[J]. 红外与激光工程, 2018, 47(1): 0103007.

    Shen H, Quan Z, Yang Y F, et al. Polarization control of combined laser beams based on optical homodyne polarization detection and phase locking[J]. Infrared and Laser Engineering, 2018, 47(1): 0103007.

[125] Wang D B, Zhou J F. Research on polarization control in the long distance fiber-optic sensing[J]. Proceedings of SPIE, 2013, 8914: 89141B.

[126] Xiong Y P, Su R T, Li X, et al. Adaptive polarization control of fiber amplifier based on SPGD algorithm[J]. Chinese Physics Letters, 2012, 29(12): 124212.

[127] Goodno G D. McNaught S J, Rothenberg J E, et al. Active phase and polarization locking of a 1.4 kW fiber amplifier[J]. Optics Letters, 2010, 35(10): 1542-1544.

[128] Wang Y S, Feng Y J, Wang X J, et al. 6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control[J]. Applied Optics, 2017, 56(10): 2760-2765.

[129] Su R T, Liu Y K, Yang B L, et al. Active polarization control of a 1.43 kW narrow linewidth fiber amplifier based on SPGD algorithm[J]. Journal of Optics, 2017, 19(4): 045802.

[130] Goodno G D. McNaught S J, Weber M E, et al. Multichannel polarization stabilization for coherently combined fiber laser arrays[J]. Optics Letters, 2012, 37(20): 4272-4274.

[131] 熊玉朋, 粟荣涛, 李霄, 等. 基于偏振自适应和主动相位控制的相干合成的实验研究[J]. 强激光与粒子束, 2013, 25(1): 5-6.

    Xiong Y P, Su R T, Li X, et al. Coherent beam combining based on adaptive polarization and active phase control technique[J]. High Power Laser and Particle Beams, 2013, 25(1): 5-6.

[132] Goodno G D, Shih C C, Rothenberg J E. Perturbative analysis of coherent combining efficiency with mismatched lasers[J]. Optics Express, 2010, 18(24): 25403-25414.

[133] Benjamin Weiss S, Weber M E, Goodno G D. Group delay locking of coherently combined broadband lasers[J]. Optics Letters, 2012, 37(4): 455-457.

[134] Klenke A, Seise E, Limpert J, et al. Basic considerations on coherent combining of ultrashort laser pulses[J]. Optics Express, 2011, 19(25): 25379-25387.

[135] Su R T, Zhou P, Wang X L, et al. Impact of temporal and spectral aberrations on coherent beam combination of nanosecond fiber lasers[J]. Applied Optics, 2013, 52(10): 2187-2193.

[136] Yu H L, Ma P F, Wang X L, et al. Influence of temporal-spectral effects on ultrafast fiber coherent polarization beam combining system[J]. Laser Physics Letters, 2015, 12(10): 105301.

[137] Seise E, Klenke A, Breitkopf S, et al. 88 W 0.5 mJ femtosecond laser pulses from two coherently combined fiber amplifiers[J]. Optics Letters, 2011, 36(19): 3858-3860.

[138] Yu H L, Zhang Z X, Wang X L, et al. High average power coherent femtosecond pulse combining system based on an all fiber active control method[J]. Laser Physics Letters, 2018, 15(7): 075101.

[139] 张志新, 于海龙, 支冬, 等. 飞秒光纤激光相干偏振合成系统全光纤光程差自适应控制方法研究[J]. 光学学报, 2016, 36(9): 0906003.

    Zhang Z X, Yu H L, Zhi D, et al. All fiber optical path difference adaptive control method in femtosecond fiber laser coherent polarization beam combination system[J]. Acta Optica Sinica, 2016, 36(9): 0906003.

[140] 周朴. 高平均功率光纤激光技术基础: 模式[J]. 强激光与粒子束, 2018, 30(6): 060201.

    Zhou P. Fundamentals of high-average-power fiber laser technology: mode[J]. High Power Laser and Particle Beams, 2018, 30(6): 060201.

[141] InjeyanH, GoodnoG, PaleseS. High power laser handbook[M]. New York: McGraw-Hill, 2011.

[142] 马鹏飞. 高功率光纤激光相干偏振合成系统研究[D]. 长沙: 国防科学技术大学, 2016.

    Ma PF. Study on coherent polarization beam combining system of high power fiber lasers[D]. Changsha: National University of Defense Technology, 2016.

[143] Liu Z J, Ma P F, Su R T, et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect[J]. Journal of the Optical Society of America B, 2017, 34(3): A7-A14.

[144] Tao R M, Wang X L, Zhou P. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 0903319.

[145] Jauregui C, Stihler C, Limpert J, et al. Transverse mode instability[J]. Advances in Optics and Photonics, 2020, 12(2): 429-484.

[146] Lei X, Wang S, Yan H, et al. Double-deformable-mirror adaptive optics system for laser beam cleanup using blind optimization[J]. Optics Express, 2012, 20(20): 22143-22157.

[147] InjeyanH, GoodnoG, KomineH, et al.High power scalable Nd∶YAG laser architecture[C]∥Conference on Lasers and Electro-Optics, 2005, May 22-27, 2005, Baltimore, MD, USA.New York: IEEE Press, 2005: CMJ3.

[148] Su R T, Yang B L, Xi X M, et al. 500 W level MOPA laser with switchable output modes based on active control[J]. Optics Express, 2017, 25(19): 23275-23282.

[149] Liu T, Chen S P, Qi X, et al. High-power transverse-mode-switchable all-fiber picosecond MOPA[J]. Optics Express, 2016, 24(24): 27821-27827.

[150] Song J X, Xu H Y, Wu H S, et al. High power narrow linewidth LP11 mode fiber laser using mode-selective FBGs[J]. Laser Physics Letters, 2018, 15(11): 115101.

[151] Song J X, Xu H Y, Wu H S, et al. All-fiberized transverse mode-switching method based on temperature control[J]. Applied Optics, 2019, 58(14): 3696-3702.

[152] Uberna R, Bratcher A, Alley T G, et al. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide[J]. Optics Express, 2010, 18(13): 13547-13553.

[153] Shekel E, Vidne Y, Urbach B. 16 kW single mode CW laser with dynamic beam for material processing[J]. Proceedings of SPIE, 2020, 1126: 1126021.

[154] Redmond S M, Ripin D J, Yu C X, et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam[J]. Optics Letters, 2012, 37(14): 2832-2834.

[155] Ma P F, Zhou P, Su R T, et al. Coherent polarization beam combining of eight fiber lasers using single-frequency dithering technique[J]. Laser Physics Letters, 2012, 9(6): 456-458.

[156] Klenke A, Breitkopf S, Kienel M, et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2013, 38(13): 2283-2285.

[157] Ma P F, Zhou P, Wang X L, et al. Coherent polarization beam combining of four 200-W-level fiber amplifiers[J]. Applied Physics Express, 2014, 7(2): 022703.

[158] Müller M, Kienel M, Klenke A, et al. 1 kW 1 mJ eight-channel ultrafast fiber laser[J]. Optics Letters, 2016, 41(15): 3439-3442.

[159] Wei L W, Cleva F, Man C N. Coherently combined master oscillator fiber power amplifiers for Advanced Virgo[J]. Optics Letters, 2016, 41(24): 5817-5820.

[160] Haraguchi E, Akiyama T, Ando T, et al. Simultaneous detection of beam pointing and optical phase errors for multiple beams using a quadrant photo detector for high-efficiency coherent beam combining systems[J]. Applied Physics Express, 2019, 12(10): 102012.

[161] Bloom G, Larat C, Lallier E, et al. Coherent combining of two quantum-cascade lasers in a Michelson cavity[J]. Optics Letters, 2010, 35(11): 1917-1919.

[162] Bloom G, Larat C, Lallier E, et al. Passive coherent beam combining of quantum-cascade lasers with a Dammann grating[J]. Optics Letters, 2011, 36(19): 3810-3812.

[163] Redmond S M, Creedon K J, Kansky J E, et al. Active coherent beam combining of diode lasers[J]. Optics Letters, 2011, 36(6): 999-1001.

[164] Phua P B. High power coherent polarization locked laser diode[J]. Optics Express, 2011, 19(6): 5364-5370.

[165] Zhao Y S, Zhu L. On-chip coherent combining of angled-grating diode lasers toward bar-scale single-mode lasers[J]. Optics Express, 2012, 20(6): 6375-6384.

[166] Creedon K J, Redmond S M, Smith G M, et al. High efficiency coherent beam combining of semiconductor optical amplifiers[J]. Optics Letters, 2012, 37(23): 5006-5008.

[167] Montoya J, Augst S J, Creedon K, et al. External cavity beam combining of 21 semiconductor lasers using SPGD[J]. Applied Optics, 2012, 51(11): 1724-1728.

[168] Zhao Y S, Zhu L. Improved beam quality of coherently combined angled-grating broad-area lasers[J]. IEEE Photonics Journal, 2013, 5(2): 1500307.

[169] Liu B, Braiman Y. Coherent beam combining of high power broad-area laser diode array with near diffraction limited beam quality and high power conversion efficiency[J]. Optics Express, 2013, 21(25): 31218-31228.

[170] Corcoran C J, Durville F. Passive coherent combination of a diode laser array with 35 elements[J]. Optics Express, 2014, 22(7): 8420-8425.

[171] Schimmel G, Doyen-Moldovan I, Janicot S, et al. Rear-side resonator architecture for the passive coherent combining of high-brightness laser diodes[J]. Optics Letters, 2016, 41(5): 950-953.

[172] Schimmel G, Janicot S, Hanna M, et al. Coherent beam combining architectures for high power tapered laser arrays[J]. Proceedings of SPIE, 2017, 1008: 100860O.

[173] Albrodt P, Niemeyer M, Crump P, et al. Coherent beam combining of high power quasi continuous wave tapered amplifiers[J]. Optics Express, 2019, 27(20): 27891-27901.

[174] Zhu H B, Duan X M, Fan S L, et al. Scalable structure of coherent polarization beam combining based on tapered diode laser amplifiers[J]. Optics & Laser Technology, 2020, 132: 106470.

[175] Huang Z, Tang X, Zhang D, et al. Phase locking of slab laser amplifiers via square wave dithering algorithm[J]. Applied Optics, 2014, 53(10): 2163-2169.

[176] Cheng Y, Liu X, Wan Q, et al. Mutual injection phase locking coherent combination of solid-state lasers based on corner cube[J]. Optics Letters, 2013, 38(23): 5150-5152.

[177] Kong HJ, ParkS, ChaS, et al. 4 kW coherent beam combination laser using self-controlled stimulated Brillouin scattering-phase conjugation mirrors for industrial applications[C]∥Advanced Solid-State Lasers Congress, 2013: JTh2A. 65.

[178] Kienel M, Müller M, Demmler S, et al. Coherent beam combination of Yb∶YAG single-crystal rod amplifiers[J]. Optics Letters, 2014, 39(11): 3278-3281.

[179] Peng C, Liang X Y, Liu R Q, et al. Two-beam coherent combining based on Ti: sapphire chirped-pulse amplification at the repetition of 1 Hz[J]. Optics Letters, 2019, 44(17): 4379-4382.

[180] Kong H J, Park S, Cha S, et al. Coherent beam combination laser system using SBS-PCM for high repetition rate solid-state lasers[J]. Optical Materials, 2013, 35(4): 807-811.

[181] Zhao P F, Dong Z Y, Zhang J Y, et al. Passive coherent beam combination of three Nd∶YAG lasers using cascaded Michelson-type compound cavities[J]. Optics Express, 2018, 26(14): 18019-18027.

[182] 刘军, 曾志男, 梁晓燕, 等. 超快超强激光及其科学应用发展趋势研究[J]. 中国工程科学, 2020, 22(03), 22: 42- 48.

    LiuJ, Zeng ZN, Liang XY, et al. and ultraintenselasers and their scientific application[J]. Strategic Study of Chinese Academy of Engineering, 2020, 22(03), 22: 42- 48.

[183] Fsaifes I, Daniault L, Bellanger S, et al. Coherent beam combining of 60 femtosecond fiber amplifiers[J]. Proceedings of SPIE, 2020, 11260: 112600L.

[184] ChangH, ChangQ, HouT, et al. Coherent beam combining of 107 fiber lasers[C]∥Advanced Solid State Lasers, 2020.

[185] Ma Y X, Zhou P, Wang X L, et al. Coherent beam combination of two thulium-doped fiber laser beams with the multi-ditheringtechnique[J]. Optics & Laser Technology, 2011, 43(3): 721-724.

[186] Honzatko P, Baravets Y, Todorov F, et al. Coherently combined power of 20 W at 2000 nm from a pair of thulium-doped fiber lasers[J]. Laser Physics Letters, 2013, 10(9): 095104.

[187] Wang X, Zhou P, Wang X L, et al. 108 W coherent beam combining of two single-frequency Tm-doped fiber MOPAs[J]. Laser Physics Letters, 2014, 11(10): 105101.

[188] Gaida C, Kienel M, Müller M, et al. Coherent combination of two Tm-doped fiber amplifiers[J]. Optics Letters, 2015, 40(10): 2301-2304.

[189] Oermann M R, Carmody N, Hemming A, et al. Coherent beam combination of four holmium amplifiers with phase control via a direct digital synthesizer chip[J]. Optics Express, 2018, 26(6): 6715-6723.

[190] Wang X, Jin X X, Wu W J, et al. 310-W single frequency Tm-doped all-fiber MOPA[J]. IEEE Photonics Technology Letters, 2015, 27(6): 677-680.

[191] HemmingA, SimakovN, DavidsonA, et al. A monolithic cladding pumped holmium-doped fibre laser[C]∥CLEO: Science and Innovations, 2013, CW1M. 1.

[192] Klenke A, Hädrich S, Eidam T, et al. 22 GW peak-power fiber chirped-pulse-amplification system[J]. Optics Letters, 2014, 39(24): 6875-6878.

[193] Heilmann A, le Dortz J, Daniault L, et al. Coherent beam combining of seven fiber chirped-pulse amplifiers using an interferometric phase measurement[J]. Optics Express, 2018, 26(24): 31542-31553.

[194] Daniault L, Hanna M, Lombard L, et al. Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Optics Letters, 2011, 36(5): 621-623.

[195] Siiman L A, Chang W Z, Zhou T, et al. Coherent femtosecond pulse combining of multiple parallel chirped pulse fiber amplifiers[J]. Optics Express, 2012, 20(16): 18097-18116.

[196] Bagayev S N, Leshchenko V E, Trunov V I, et al. Coherent combining of femtosecond pulses parametrically amplified in BBO crystals[J]. Optics Letters, 2014, 39(6): 1517-1520.

[197] Leshchenko V E, Trunov V I, Frolov S A, et al. Coherent combining of multimillijoule parametric-amplified femtosecond pulses[J]. Laser Physics Letters, 2014, 11(9): 095301.

[198] 于海龙. 高功率飞秒光纤激光及其相干合成技术研究[D]. 长沙: 国防科学技术大学, 2016.

    Yu HL. Study on high power femtosecond fiber lasers and their coherent beam combining technology[D]. Changsha: National University of Defense Technology, 2016.

[199] Yang K W, Zhu G S, Hao Q, et al. Coherent polarization beam combination by microcontroller-based phase-locking method[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2129-2132.

[200] Mu J, Li Z L, Jing F, et al. Coherent combination of femtosecond pulses via non-collinear cross-correlation and far-field distribution[J]. Optics Letters, 2016, 41(2): 234-237.

[201] Peng C, Liang X Y, Liu R Q, et al. High-precision active synchronization control of high-power, tiled-aperture coherent beam combining[J]. Optics Letters, 2017, 42(19): 3960-3963.

[202] Hanna M, Guichard F, Zaouter Y, et al. Coherent combination of ultrafast fiber amplifiers[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49(6): 062004.

[203] Limpert J, Klenke A, Kienel M, et al. Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 268-277.

[204] Guichard F, Hanna M, Zaouter Y, et al. Analysis of limitations in divided-pulse nonlinear compression and amplification[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 619-623.

[205] Lamb E S, Wright L G, Wise F W. Divided-pulse lasers[J]. Optics Letters, 2014, 39(9): 2775-2777.

[206] Kienel M, Müller M, Klenke A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 2016, 41(14): 3343-3346.

[207] Stark H, Buldt J, Müller M, et al. 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification[J]. Optics Letters, 2019, 44(22): 5529-5532.

[208] Astrauskas I, Kaksis E, Flöry T, et al. High-energy pulse stacking via regenerative pulse-burst amplification[J]. Optics Letters, 2017, 42(11): 2201-2204.

[209] Zhou T, Ruppe J, Zhu C, et al. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers[J]. Optics Express, 2015, 23(6): 7442-7462.

[210] Pei HZ, RuppeJ, Chen SY, et al. 10 mJ energy extraction from Yb-doped 85 μm core CCC fiber using coherent pulse stacking amplification of fs pulses[C]∥Advanced Solid State Lasers 2017, 2017, AW4A. 4.

[211] LimpertJ. Coherent temporal pulse-stacking approaches for peak-power scaling of ultrafast laser systems[C]∥High-Brightness Sources and Light-Driven Interactions, 2016, HM8B. 1.

[212] Huang S W, Cirmi G, Moses J, et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics[J]. Nature Photonics, 2011, 5(8): 475-479.

[213] Guichard F, Hanna M, Lombard L, et al. Two-channel pulse synthesis to overcome gain narrowing in femtosecond fiber amplifiers[J]. Optics Letters, 2013, 38(24): 5430-5433.

[214] Chang W Z, Zhou T, Siiman L A, et al. Femtosecond pulse spectral synthesis in coherently-spectrally combined multi-channel fiber chirped pulse amplifiers[J]. Optics Express, 2013, 21(3): 3897-3910.

[215] Rigaud P, Kermene V, Bouwmans G, et al. Spatially dispersive amplification in a 12-core fiber and femtosecond pulse synthesis by coherent spectral combining[J]. Optics Express, 2013, 21(11): 13555-13563.

[216] Chia S H, Cirmi G, Fang S B, et al. Two-octave-spanning dispersion-controlled precision optics for sub-optical-cycle waveform synthesizers[J]. Optica, 2014, 1(5): 315-322.

[217] Cox J A, Putnam W P, Sell A, et al. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback[J]. Optics Letters, 2012, 37(17): 3579-3581.

[218] 田昊晨, 宋有建, 马春阳, 等. 两台独立飞秒激光器的脉冲序列与载波包络相位同步[J]. 中国激光, 2016, 43(8): 0801003.

    Tian H C, Song Y J, Ma C Y, et al. Timing and carrier envelope phase synchronization from two independent femtosecond lasers[J]. Chinese Journal of Lasers, 2016, 43(8): 0801003.

[219] Tian H C, Song Y J, Meng F, et al. Long-term stable coherent beam combination of independent femtosecond Yb-fiber lasers[J]. Optics Letters, 2016, 41(22): 5142-5145.

[220] Marandi A, Leindecker N C, Pervak V, et al. Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy[J]. Optics Express, 2012, 20(7): 7255-7262.

[221] DurécuA, CanatG, Le GouëtJ, et al. Coherent combining of SHG converters[C]∥CLEO: Applications and Technology 2014, 2014, JTh2A. 19.

[222] Li X, Xiao H, Dong X L, et al. Coherent beam combining of two slab laser amplifiers and second-harmonic phase locking based on a multi-dithering technique[J]. Chinese Physics Letters, 2011, 28(9): 094210.

[223] Guan Y F, Zhang P Q, Xie X S, et al. Coherent beam combining with second-harmonic generation optimized with adaptive phase control[J]. IEEE Journal of Quantum Electronics, 2011, 47(3): 348-353.

[224] Gapontsev V, Avdokhin A, Kadwani P, et al. SM green fiber laser operating in CW and QCW regimes and producing over 550 W of average output power[J]. Proceedings of SPIE, 2014, 8964: 896407.

[225] Nikitin D G, Byalkovskiy O A, Vershinin O I, et al. Sum frequency generation of UV laser radiation at 266 nm in LBO crystal[J]. Optics Letters, 2016, 41(7): 1660-1663.

[226] Cole B, Goldberg L, Chinn S, et al. Compact and efficient mid-IR OPO source pumped by a passively Q-switched Tm: YAP laser[J]. Optics Letters, 2018, 43(5): 1099-1102.

[227] Želudevičius J, Regelskis K, Račiukaitis G. Experimental demonstration of pulse multiplexing and beam combining of four fiber lasers by noncollinear frequency conversion in an LBO crystal[J]. Optics Letters, 2017, 42(2): 175-178.

[228] Želudevičius J, Rutkauskas R, Regelskis K. Coherent beam combining of pulsed fiber amplifiers by noncolinear sum-frequency generation[J]. Optics Letters, 2019, 44(7): 1813-1816.

[229] Tsubakimoto K, Yoshida H, Miyanaga N. 600 W green and 300 W UV light generated from an eight-beam, sub-nanosecond fiber laser system[J]. Optics Letters, 2017, 42(17): 3255-3258.

[230] Albrodt P, Jamal M T, Hansen A K, et al. Coherent combining of high brightness tapered amplifiers for efficient non-linear conversion[J]. Optics Express, 2019, 27(2): 928-937.

[231] Taylor L R, Feng Y, Calia D B. 50W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Optics Express, 2010, 18(8): 8540-8555.

[232] Vornehm J E, Schweinsberg A, Shi Z, et al. Phase locking of multiple optical fiber channels for a slow-light-enabled laser radar system[J]. Optics Express, 2013, 21(11): 13094-13104.

[233] Lombard L, Valla M, Planchat C, et al. Eyesafe coherent detection wind lidar based on a beam-combined pulsed laser source[J]. Optics Letters, 2015, 40(6): 1030-1033.

[234] 赵建林, 蔡阳健. “光场调控、传输及其应用”专题前言[J]. 光学学报, 2016, 36(10), 36: 1026000.

    Zhao JL, Cai Y J. Introduction for feature issue on light field, control, transmission, application[J]. Acta OpticaSinica, 2016, 36(10), 36: 1026000.

[235] 赵建林, 蔡阳健. “光场调控、传输及其应用”专题Ⅱ前言[J]. 光学学报, 2019, 39(1): 0126000.

    Zhao J L, Cai Y J. Introduction for feature issue on light field manipulation, transmission, and application (section II)[J]. Acta Optica Sinica, 2019, 39(1): 0126000.

[236] Hou T Y, Zhou P, Ma Y X, et al. Review on structured optical field generated from array beams[J]. Proceedings of SPIE, 2018, 1071: 107103Z.

[237] Ma P F, Zhou P, Ma Y X, et al. Generation of azimuthally and radially polarized beams by coherent polarization beam combination[J]. Optics Letters, 2012, 37(13): 2658-2660.

[238] Aksenov V P, Dudorov V V, Kolosov V V. Properties of vortex beams formed by an array of fibre lasers and their propagation in a turbulent atmosphere[J]. Quantum Electronics, 2016, 46(8): 726-732.

[239] Aksenov V P, Dudorov V V, Filimonov G A, et al. Vortex beams with zero orbital angular momentum and non-zero topological charge[J]. Optics & Laser Technology, 2018, 104: 159-163.

[240] Hou T Y, Zhi D, Tao R M, et al. Spatially-distributed orbital angular momentum beam array generation based on greedy algorithms and coherent combining technology[J]. Optics Express, 2018, 26(12): 14945-14958.

[241] Hou T Y, Zhang Y Q, Chang Q, et al. High-power vortex beam generation enabled by a phased beam array fed at the nonfocal-plane[J]. Optics Express, 2019, 27(4): 4046-4059.

[242] Hou T Y, An Y, Chang Q, et al. Deep-learning-assisted, two-stage phase control method for high-power mode-programmable orbital angular momentum beam generation[J]. Photonics Research, 2020, 8(5): 715-722.

[243] Zhi D, Hou T Y, Ma P F, et al. Comprehensive investigation on producing high-power orbital angular momentum beams by coherent combining technology[J]. High Power Laser Science and Engineering, 2019, 7(2): e33.

[244] Yu T, Xia H, Xie W K, et al. The generation and verification of Bessel-Gaussian beam based on coherent beam combining[J]. Results in Physics, 2020, 16: 102872.

[245] Aksenov V P, Dudorov V V, Kolosov V V, et al. Synthesized vortex beams in the turbulent atmosphere[J]. Frontiers in Physics, 2020, 8: 143.

[246] Belmonte A. Digital equalization of time-delay array receivers on coherent laser communications[J]. Optics Letters, 2017, 42(2): 310-313.

[247] Belmonte A. Capacity of coherent laser downlinks[J]. Journal of Lightwave Technology, 2014, 32(11): 2128-2132.

[248] Geisler D J, Yarnall T M, Schieler C M, et al. Experimental demonstration of multi-aperture digital coherent combining over a 3.2-km free-space link[J]. Proceedings of SPIE, 2017, 1009: 100960C.

[249] Geisler D J, Yarnall T M, Stevens M L, et al. Multi-aperture digital coherent combining for free-space optical communication receivers[J]. Optics Express, 2016, 24(12): 12661-12671.

[250] Yang Y, Geng C, Li F, et al. Multi-aperture all-fiber active coherent beam combining for free-space optical communication receivers[J]. Optics Express, 2017, 25(22): 27519-27532.

[251] Geng C, Geng C, Li F, et al. Fiber laser transceiving and wavefront aberration mitigation with adaptive distributed aperture array for free-space optical communications[J]. Optics Letters, 2020, 45(7): 1906-1909.

[252] 韩建, 陈恒, 马万卓, 等. 光纤激光相控阵技术的通信研究[J]. 光电技术应用, 2015, 30(2): 74-77.

    Han J, Chen H, Ma W Z, et al. Research on communication based on optical fiber laser phased array technology[J]. Electro-Optic Technology Application, 2015, 30(2): 74-77.

[253] 毕明喆, 苏煜炜, 马万卓, 等. 基于光纤激光相控阵的空间激光通信系统[J]. 应用光学, 2016, 37(6): 938-941.

    Bi M Z, Su Y W, Ma W Z, et al. Space laser communication system based on fiber laser phased array[J]. Journal of Applied Optics, 2016, 37(6): 938-941.

[254] 孙鸿伟, 韩建, 慈明儒, 等. 大功率光纤激光相控通信技术研究[J]. 光通信技术, 2015, 39(1): 36-38.

    Sun H W, Han J, Ci M R, et al. Research of high-power fiber laser phased array communications technology[J]. Optical Communication Technology, 2015, 39(1): 36-38.

[255] Moses E I. The national ignition facility and the promise of inertial fusion energy[J]. Fusion Science and Technology, 2011, 60(1): 11-16.

[256] 冷雨欣. 上海超强超短激光实验装置[J]. 中国激光, 2019, 46(1): 0100001.

    Leng Y X. Shanghai superintense ultrafast laser facility[J]. Chinese Journal of Lasers, 2019, 46(1): 0100001.

[257] 朱健强, 陈绍和, 郑玉霞, 等. 神光Ⅱ激光装置研制[J]. 中国激光, 2019, 46(1): 0100002.

    Zhu J Q, Chen S H, Zheng Y X, et al. Review on development of Shenguang-Ⅱ laser facility[J]. Chinese Journal of Lasers, 2019, 46(1): 0100002.

[258] 张小民, 魏晓峰. 中国新一代巨型高峰值功率激光装置发展回顾[J]. 中国激光, 2019, 46(1): 0100003.

    Zhang X M, Wei X F. Review of new generation of huge-scale high peak power laser facility in China[J]. Chinese Journal of Lasers, 2019, 46(1): 0100003.

[259] 赵振堂, 王东, 殷立新, 等. 上海软X射线自由电子激光装置[J]. 中国激光, 2019, 46(1): 0100004.

    Zhao Z T, Wang D, Yin L X, et al. Shanghai soft X-ray free-electron laser facility[J]. Chinese Journal of Lasers, 2019, 46(1): 0100004.

[260] 余永, 李钦明, 杨家岳, 等. 大连极紫外相干光源[J]. 中国激光, 2019, 46(1): 0100005.

    Yu Y, Li Q M, Yang J Y, et al. Dalian extreme ultraviolet coherent light source[J]. Chinese Journal of Lasers, 2019, 46(1): 0100005.

[261] Soulard R, Quinn M N, Mourou G. Design and properties of a coherent amplifying network laser[J]. Applied Optics, 2015, 54(15): 4640-4645.

[262] Mourou G. Science and applications of the coherent amplifying network (CAN) laser[J]. The European Physical Journal Special Topics, 2015, 224(13): 2527-2528.

[263] Luu-Thanh P, Tuckmantel T, Pukhov A, et al. Laser fields in dynamically ionized plasma structures for coherent acceleration[J]. The European Physical Journal Special Topics, 2015, 224(13): 2625-2629.

[264] Holzer B J. CERN needs for future accelerators in high energy physics[J]. The European Physical Journal Special Topics, 2015, 224(13): 2615-2620.

[265] Roth M, Logan B G. Advanced space power and propulsion based on lasers[J]. The European Physical Journal Special Topics, 2015, 224(13): 2657-2663.

[266] Moustaizis S D, Lalousis P, Perrakis K, et al. ICAN: high power neutral beam generation[J]. The European Physical Journal Special Topics, 2015, 224(13): 2639-2643.

[267] Bychenkov V Y, Brantov A V. Laser-based ion sources for medical applications[J]. The European Physical Journal Special Topics, 2015, 224(13): 2621-2624.

[268] Gales S. Team F T E N. Laser driven nuclear science and applications: the need of high efficiency, high power and high repetition rate Laser beams[J]. The European Physical Journal Special Topics, 2015, 224(13): 2631-2637.

[269] Quinn M N, Jukna V, Ebisuzaki T, et al. Space-based application of the CAN laser to LIDAR and orbital debris remediation[J]. The European Physical Journal Special Topics, 2015, 224(13): 2645-2655.

[270] Daniault L, Bellanger S, Le Dortz J, et al. XCAN: a coherent amplification network of femtosecond fiber chirped-pulse amplifiers[J]. The European Physical Journal Special Topics, 2015, 224(13): 2609-2613.

周朴, 粟荣涛, 马阎星, 马鹏飞, 吴坚, 李灿, 姜曼. 激光相干合成的研究进展:2011—2020[J]. 中国激光, 2021, 48(4): 0401003. Pu Zhou, Rongtao Su, Yanxing Ma, Pengfei Ma, Jian Wu, Can Li, Man Jiang. Review of Coherent Laser Beam Combining Research Progress in the Past Decade[J]. Chinese Journal of Lasers, 2021, 48(4): 0401003.

本文已被 24 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!