中国激光, 2021, 48 (5): 0501001, 网络出版: 2021-03-10   

阿秒光学进展及发展趋势 下载: 4170次封底文章特邀综述

Progresses and Trends in Attosecond Optics
作者单位
1 中国科学院物理研究所北京凝聚态物理国家研究中心, 北京 100190
2 松山湖材料实验室, 广东 东莞 523808
3 中国科学院大学, 北京 100049
4 北京交通大学理学院微纳材料及应用研究所, 北京 100044
5 西安电子科技大学物理与光电工程学院, 陕西 西安 710071
引用该论文

魏志义, 钟诗阳, 贺新奎, 赵昆, 滕浩, 王帅, 梁玥瑛, 王佶, 喻苏玉, 陈云琳, 朱江峰. 阿秒光学进展及发展趋势[J]. 中国激光, 2021, 48(5): 0501001.

Zhiyi Wei, Shiyang Zhong, Xinkui He, Kun Zhao, Hao Teng, Shuai Wang, Yueying Liang, Ji Wang, Suyu Yu, Yunlin Chen, Jiangfeng Zhu. Progresses and Trends in Attosecond Optics[J]. Chinese Journal of Lasers, 2021, 48(5): 0501001.

参考文献

[1] McPherson A, Gibson G, Jara H, et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases[J]. Journal of the Optical Society of America B, 1987, 4(4): 595-601.

[2] Ferray M, L'Huillier A, Li X F, et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1988, 21(3): L31-L35.

[3] Farkas G, Tóth C. Proposal for attosecond light pulse generation using laser induced multiple-harmonic conversion processes in rare gases[J]. Physics Letters A, 1992, 168(5/6): 447-450.

[4] Harris S E, Macklin J J, Hänsch T W. Atomic scale temporal structure inherent to high-order harmonic generation[J]. Optics Communications, 1993, 100(5/6): 487-490.

[5] Hentschel M, Kienberger R, Spielmann C, et al. Attosecond metrology[J]. Nature, 2001, 414(6863): 509-513.

[6] Paul P M, Toma E S, Breger P, et al. Observation of atrain of attosecond pulses from high harmonic generation[J]. Science, 2001, 292(5522): 1689-1692.

[7] Schultze M, Fiess M, Karpowicz N, et al. Delay in photoemission[J]. Science, 2010, 328(5986): 1658-1662.

[8] Klünder K, Dahlström J M, Gisselbrecht M, et al. Probing single-photon ionization on the attosecond time scale[J]. Physical Review Letters, 2011, 106(16): 169904.

[9] Nandi S, Plésiat E, Zhong S, et al. Attosecond timing of electron emission from a molecular shape resonance[J]. Science Advances, 2020, 6(31): eaba7762.

[10] Cavalieri A L, Müller N, Uphues T, et al. Attosecond spectroscopy in condensed matter[J]. Nature, 2007, 449(7165): 1029-1032.

[11] Locher R, Castiglioni L, Lucchini M, et al. Energy-dependent photoemission delays from noble metal surfaces by attosecond interferometry[J]. Optica, 2015, 2(5): 405-410.

[12] Gruson V, Barreau L, et al. Attosecond dynamics through a Fano resonance: monitoring the birth of a photoelectron[J]. Science, 2016, 354(6313): 734-738.

[13] Cirelli C, Marante C, Heuser S, et al. Anisotropic photoemission time delays close to a Fano resonance[J]. Nature Communications, 2018, 9(1): 955.

[14] Drescher M, Hentschel M, Kienberger R, et al. Time-resolved atomic inner-shell spectroscopy[J]. Nature, 2002, 419(6909): 803-807.

[15] Zhong S Y, Vinbladh J, Busto D, et al. Attosecond electron-spin dynamics in Xe 4d photoionization[J]. Nature Communications, 2020, 11(1): 5042.

[16] Calegari F, Ayuso D, Trabattoni A, et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses[J]. Science, 2014, 346(6207): 336-339.

[17] Burt M, Boll R. Lee J W L, et al. Coulomb-explosion imaging of concurrent CH2BrI photodissociation dynamics[J]. Physical Review A, 2017, 96(4): 043415.

[18] Schultze M, Bothschafter E M, Sommer A, et al. Controlling dielectrics with the electric field of light[J]. Nature, 2013, 493(7430): 75-78.

[19] Li J, Ren X, Yin Y, et al. Erratum: 53-attosecond X-ray pulses reach the carbon K-edge[J]. Nature Communications, 2017, 8(1): 186.

[20] Gaumnitz T, Jain A, Pertot Y, et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver[J]. Optics Express, 2017, 25(22): 27506-27518.

[21] Lan P F, Lu P X, Cao W, et al. Isolated sub-100-as pulse generation via controlling electron dynamics[J]. Physical Review A, 2007, 76: 011402.

[22] Zeng Z N, Cheng Y, Song X H, et al. Generation of an extreme ultraviolet supercontinuum in a two-color laser field[J]. Physical Review Letters, 2007, 98(20): 203901.

[23] Zhong S Y, He X K, Jiang Y J, et al. Noncollinear gating for high-flux isolated-attosecond-pulse generation[J]. Physical Review A, 2016, 93(3): 033854.

[24] Wei P, Miao J, Zeng Z, et al. Selective enhancement of a single harmonic emission[J]. Bulletin of the Chinese Academy of Sciences, 2013, 27(4): 201.

[25] 汪丽, 薛金星, 曾志男, 等. 共振增强单色高次谐波产生[J]. 中国激光, 2019, 46(10): 1001003.

    Wang L, Xue J X, Zeng Z N, et al. Generation of resonantly enhanced monochromatic high-order harmonics[J]. Chinese Journal of Lasers, 2019, 46(10): 1001003.

[26] Ye P, He X K, Teng H, et al. Full quantum trajectories resolved high-order harmonic generation[J]. Physical Review Letters, 2014, 113(7): 073601.

[27] Du M W, Liu C D, Zheng Y H, et al. Attosecond transient-absorption spectroscopy in one-dimensional periodic crystals[J]. Physical Review A, 2019, 100(4): 043840.

[28] 张煜, 杨帆, 刘灿东, 等. H2+阿秒瞬态吸收中的量子路径干涉[J]. 中国激光, 2020, 47(8): 0801004.

    Zhang Y, Yang F, Liu C D, et al. Quantum path interference in attosecond transient absorption of H2+[J]. Chinese Journal of Lasers, 2020, 47(8): 0801004.

[29] Xu M H, Peng L Y, Zhang Z, et al. Attosecond streaking in the low-energy region as a probe of rescattering[J]. Physical Review Letters, 2011, 107(18): 183001.

[30] Ning Q C, Peng L Y, Song S N, et al. Attosecond streaking of Cohen-Fano interferences in the photoionizationof H2+[J]. Physical Review A, 2014, 90: 013423.

[31] Zhan M J, Ye P, Teng H, et al. Generation and measurement of isolated 160-attosecond XUV laser pulses at 82 eV[J]. Chinese Physics Letters, 2013, 30(9): 093201.

[32] Teng H, He X K, Zhao K, et al. Attosecond laser station[J]. Chinese Physics B, 2018, 27(7): 074203.

[33] Yang Z, Cao W, Chen X, et al. All-optical frequency-resolved optical gating for isolated attosecond pulse reconstruction[J]. Optics Letters, 2020, 45(2): 567-570.

[34] Wang X W, Wang L, Xiao F, et al. Generation of 88 as isolated attosecond pulses with double optical gating[J]. Chinese Physics Letters, 2020, 37(2): 023201.

[35] 王向林, 徐鹏, 李捷, 等. 利用自研阿秒条纹相机测得159 as孤立阿秒脉冲[J]. 中国激光, 2020, 47(4): 0415002.

    Wang X L, Xu P, Li J, et al. Isolated attosecond pulse with 159 as duration measured by home built attosecond streaking camera[J]. Chinese Journal of Lasers, 2020, 47(4): 0415002.

[36] Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 1993, 71(13): 1994.

[37] Schafer K J, Yang B R. DiMauro L F, et al. Above threshold ionization beyond the high harmonic cutoff[J]. Physical Review Letters, 1993, 70(11): 1599-1602.

[38] Arnold C L, Isinger M, Busto D, et al. How can attosecond pulse train interferometry interrogate electron dynamics?[J]. Photoniques, 2018: 28-35.

[39] Sekikawa T, Kosuge A, Kanai T, et al. Nonlinear optics in the extreme ultraviolet[J]. Nature, 2004, 432(7017): 605-608.

[40] Manschwetus B, Rading L, Campi F, et al. Two-photon double ionization of neon using an intense attosecond pulse train[J]. Physical Review A, 2016, 93(6): 061402.

[41] Ravasio A, Gauthier D, Maia F R, et al. Single-shot diffractive imaging with a table-top femtosecond soft X-ray laser-harmonics source[J]. Physical Review Letters, 2009, 103(2): 028104.

[42] Tzallas P, Skantzakis E. Nikolopoulos L A A, et al. Extreme-ultraviolet pump-probe studies of one-femtosecond-scale electron dynamics[J]. Nature Physics, 2011, 7(10): 781-784.

[43] Rudawski P, Heyl C M, Brizuela F, et al. A high-flux high-order harmonic source[J]. Review of Scientific Instruments, 2013, 84(7): 073103.

[44] Constant E, Garzella D, Breger P, et al. Optimizing high harmonic generation in absorbing gases: model and experiment[J]. Physical Review Letters, 1999, 82(8): 1668-1671.

[45] Balcou P. Sali`eres P, L'Huillier A, et al. Generalized phase-matching conditions for high harmonics: the role of field-gradient forces[J]. Physical Review A, 1997, 55(4): 3204-3210.

[46] Gaarde M B, Tate J L, Schafer K J. Macroscopic aspects of attosecond pulse generation[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41(13): 132001.

[47] Heyl C M, Coudert-Alteirac H, Miranda M, et al. Scale-invariant nonlinear optics in gases[J]. Optica, 2016, 3(1): 75-81.

[48] Heyl C M, Arnold C L, Couairon A, et al. Introduction to macroscopic power scaling principles for high-order harmonic generation[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50(1): 013001.

[49] Hergott J F, Kovacev M, Merdji H, et al. Extreme-ultraviolet high-order harmonic pulses in the microjoule range[J]. Physical Review A, 2002, 66(2): 021801.

[50] Takahashi E, Nabekawa Y, Otsuka T, et al. Generation of highly coherent submicrojoule soft x rays by high-order harmonics[J]. Physical Review A, 2002, 66(2): 021802.

[51] Takahashi E, Nabekawa Y, Midorikawa K. Generation of 10-μJ coherent extreme-ultraviolet light by use of high-order harmonics[J]. Optics Letters, 2002, 27(21): 1920-1922.

[52] Tzallas P, Charalambidis D, Papadogiannis N A, et al. Direct observation of attosecond light bunching[J]. Nature, 2003, 426(6964): 267-271.

[53] Dacasa H, Coudert-Alteirac H, Guo C, et al. Single-shot extreme-ultraviolet wavefront measurements of high-order harmonics[J]. Optics Express, 2019, 27(3): 2656-2670.

[54] Yoshitomi D, Nees J, Miyamoto N, et al. Phase-matched enhancements of high-harmonic soft X-rays by adaptive wave-front control with a genetic algorithm[J]. Applied Physics B, 2004, 78(3/4): 275-280.

[55] Takahashi E J, Nabekawa Y, Mashiko H, et al. Generation of strong optical field in soft X-ray region by using high-order harmonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(6): 1315-1328.

[56] Wang Y, Guo T Y, Li J L, et al. Enhanced high-order harmonic generation driven by a wavefront corrected high-energy laser[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51(13): 134005.

[57] Nayak A, Orfanos I, Makos I, et al. Multiple ionization of argon via multi-XUV-photon absorption induced by 20-GW high-order harmonic laser pulses[J]. Physical Review A, 2018, 98(2): 023426.

[58] Senfftleben B, Kretschmar M, Hoffmann A, et al. Highly non-linear ionization of atoms induced by intense high-harmonic pulses[J]. Journal of Physics: Photonics, 2020, 2(3): 034001.

[59] Maclot S, Lahl J, Peschel J, et al. Dissociation dynamics of the diamondoid adamantane upon photoionization by XUV femtosecond pulses[J]. Scientific Reports, 2020, 10(1): 1-12.

[60] Kühn S, Dumergue M, Kahaly S, et al. The ELI-ALPS facility: the next generation of attosecond sources[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50(13): 132002.

[61] Seres J, Yakovlev V S, Seres E, et al. Coherent superposition of laser-driven soft-X-ray harmonics from successive sources[J]. Nature Physics, 2007, 3(12): 878-883.

[62] Willner A, Tavella F, Yeung M, et al. Coherent control of high harmonic generation via dual-gas multijet arrays[J]. Physical Review Letters, 2011, 107(17): 175002.

[63] Sola I J, Mével E, Elouga L, et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating[J]. Nature Physics, 2006, 2(5): 319-322.

[64] Ferrari F, Calegari F, Lucchini M, et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields[J]. Nature Photonics, 2010, 4(12): 875-879.

[65] Chang Z H. Controlling attosecond pulse generation with a double optical gating[J]. Physical Review A, 2007, 76(5): 051403.

[66] MajorB, GhafurO, KovácsK, et al. ( 2020-12-08)[2021-01-20]. https: //arxiv. org/abs/2012. 04566v1.

[67] 魏志义, 许思源, 江昱佼, 等. 阿秒脉冲产生的技术原理及进展[J]. 科学通报, 2021, 66: 1-1.

    Wei Z Y, Xu S Y, Jiang Y J, et al. Progress on technology and principle of attosecond laser pulse generation[J]. Chinese Science Bulletin, 2021, 66: 1-1.

[68] Kaku M, Oishi Y, Suda A, et al. Generation of extreme ultraviolet continuum radiation driven by a sub-10-fs two-color field[J]. Optics Express, 2006, 14(16): 7230-7237.

[69] Mashiko H, Gilbertson S, Li C Q, et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers[J]. Physical Review Letters, 2008, 100(10): 103906.

[70] HaesslerS, BalčiŭnasT, FanG, et al. Optimization of quantum trajectories driven by strong-field waveforms[C] //Ultrafast Phenomena XIX, 2015: 72- 77.

[71] Jin C, Wang G, Wei H, et al. Waveforms for optimal sub-keV high-order harmonics with synthesized two-or three-colour laser fields[J]. Nature Communications, 2014, 5: 4003.

[72] Jin C, Hong K H, Lin C D. Optimal generation of spatially coherent soft X-ray isolated attosecond pulses in a gas-filled waveguide using two-color synthesized laser pulses[J]. Scientific Reports, 2016, 6: 38165.

[73] Lan P F, Takahashi E J, Midorikawa K. Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation[J]. Physical Review A, 2010, 82(5): 053413.

[74] Takahashi E J, Lan P F, Mücke O D, et al. Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse[J]. Physical Review Letters, 2010, 104(23): 233901.

[75] Takahashi E J, Lan P, Mücke O D, et al. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses[J]. Nature Communications, 2013, 4(1): 2691.

[76] Xue B, Tamaru Y, Fu Y X, et al. Fully stabilized multi-TW optical waveform synthesizer: toward gigawatt isolated attosecond pulses[J]. Science Advances, 2020, 6(16): eaay2802.

[77] Matía-Hernando P, Witting T, Walke D J, et al. Enhanced attosecond pulse generation in the vacuum ultraviolet using a two-colour driving field for high harmonic generation[J]. Journal of Modern Optics, 2018, 65(5/6): 737-744.

[78] Greening D, Weaver B, Pettipher A J, et al. Generation and measurement of isolated attosecond pulses with enhanced flux using a two colour synthesized laser field[J]. Optics Express, 2020, 28(16): 23329-23337.

[79] Wirth A, Hassan M T, Grguras I, et al. Synthesized light transients[J]. Science, 2011, 334(6053): 195-200.

[80] Rossi G M, Mainz R E, Yang Y D, et al. Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science[J]. Nature Photonics, 2020, 14(10): 629-635.

[81] Hassan M T, Wirth A, Grguraš I, et al. Attosecond photonics: synthesis and control of light transients[J]. The Review of Scientific Instruments, 2012, 83(11): 111301.

[82] Shan B, Chang Z H. Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field[J]. Physical Review A, 2001, 65(1): 011804.

[83] Chen M C, Arpin P, Popmintchev T, et al. Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source[J]. Physical Review Letters, 2010, 105(17): 173901.

[84] Hong K H, Huang S W, Moses J, et al. High-energy, phase-stable, ultrabroadband kHz OPCPA at 21 μm pumped by a picosecond cryogenic Yb: YAG laser[J]. Optics Express, 2011, 19(16): 15538.

[85] Shiner A D, Trallero-Herrero C, Kajumba N, et al. Wavelength scaling of high harmonic generation efficiency[J]. Physical Review Letters, 2009, 103(7): 073902.

[86] Popmintchev T, Chen M C, Popmintchev D, et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 2012, 336(6086): 1287-1291.

[87] Teichmann S M, Silva F, Cousin S L, et al. 0. 5 keV soft X-ray attosecond continua[J]. Nature Communications, 2016, 7: 11493.

[88] Johnson A S, Austin D R, Wood D A, et al. High-flux soft X-ray harmonic generation from ionization-shaped few-cycle laser pulses[J]. Science Advances, 2018, 4(5): eaar3761.

[89] Colosimo P, Doumy G, Blaga C I, et al. Scaling strong-field interactions towards the classical limit[J]. Nature Physics, 2008, 4(5): 386-389.

[90] Saito N, Ishii N, Kanai T, et al. Attosecond streaking measurement of extreme ultraviolet pulses using a long-wavelength electric field[J]. Scientific Reports, 2016, 6(1): 35594.

[91] Cousin S L, di Palo N, Buades B, et al. Attosecond streaking in the water window: a new regime of attosecond pulse characterization[J]. Physical Review X, 2017, 7(4): 041030.

[92] Koralek J D, Douglas J F, Plumb N C, et al. Laser based angle-resolved photoemission, the sudden approximation, and quasiparticle-like spectral peaks in Bi2Sr2CaCu2O8+δ[J]. Physical Review Letters, 2006, 96(1): 017005.

[93] Dörner R, Mergel V, Jagutzki O, et al. Cold target recoil ion momentum spectroscopy: a ‘momentum microscope’ to view atomic collision dynamics[J]. Physics Reports, 2000, 330(2/3): 95-192.

[94] Damascelli A, Hussain Z, Shen Z X. Angle-resolved photoemission studies of the cuprate superconductors[J]. Reviews of Modern Physics, 2003, 75(2): 473-541.

[95] Wernet P, Gaudin J, Godehusen K, et al. Femtosecond time-resolved photoelectron spectroscopy with a vacuum-ultraviolet photon source based on laser high-order harmonic generation[J]. The Review of Scientific Instruments, 2011, 82(6): 063114.

[96] Niu Y, Liu F Y, Liu Y, et al. Pressure-dependent phase matching for high harmonic generation of Ar and N2 in the tight focusing regime[J]. Optics Communications, 2017, 397: 118-121.

[97] Heyl C M, Güdde J, L’Huillier A, et al. High-order harmonic generation with μJ laser pulses at high repetition rates[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45(7): 074020.

[98] Hädrich S, Krebs M, Rothhardt J, et al. Generation of μW level plateau harmonics at high repetition rate[J]. Optics Express, 2011, 19(20): 19374-19383.

[99] Vernaleken A, Weitenberg J, Sartorius T, et al. Single-pass high-harmonic generation at 20. 8 MHz repetition rate[J]. Optics Letters, 2011, 36(17): 3428-3430.

[100] Rothhardt J, Krebs M, Hädrich S, et al. Absorption-limited and phase-matched high harmonic generation in the tight focusing regime[J]. New Journal of Physics, 2014, 16(3): 033022.

[101] Cirmi G, Lai C J, Huang S W, et al. Tunable high harmonic generation driven by a visible optical parametric amplifier[J]. EPJ Web of Conferences, 2013, 41: 01002.

[102] Russbueldt P, Mans T, Rotarius G, et al. 400 W Yb∶YAG innoslab fs-amplifier[J]. Optics Express, 2009, 17(15): 12230-12245.

[103] Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 2010, 35(2): 94-96.

[104] Saraceno C, Schriber C, Emaury F, et al. Cutting-edge high-power ultrafast thin disk oscillators[J]. Applied Sciences, 2013, 3(2): 355-395.

[105] Wang H, Xu Y, Ulonska S, et al. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV[J]. Nature Communications, 2015, 6(1): 7459.

[106] Comby A, Descamps D, Beauvarlet S, et al. Cascaded harmonic generation from a fiber laser: a milliwatt XUV source[J]. Optics Express, 2019, 27(15): 20383-20396.

[107] KlasR, KirscheA, GebhardtM, et al. Ultra-short-pulse high-average-power Megahertz-repetition-rate coherent extreme-ultraviolet light source[EB/OL]. (2020-12-21)[2021-01-20]. https: //arxiv. org/abs/2012. 11244.

[108] Sabbar M, Heuser S, Boge R, et al. Combining attosecond XUV pulses with coincidence spectroscopy[J]. The Review of Scientific Instruments, 2014, 85(10): 103113.

[109] HammerlandD, ZhangP, KühnS, et al., Molecular and OpticalPhysics, 2019, 52(23): 23LT01.

[110] Ye P, Csizmadia T, Oldal L G, et al. Attosecond pulse generation at ELI-ALPS 100 kHz repetition rate beamline[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53(15): 154004.

[111] Witting T, Furch F, Osolodkov M, et al. Generation and characterization of isolated attosecond pulses for coincidence spectroscopy at 100 kHz repetition rate[J]. Journal of Physics: Conference Series, 2020, 1412: 072031.

[112] Kern C, Zürch M, Spielmann C. Limitations of extreme nonlinear ultrafast nanophotonics[J]. Nanophotonics, 2015, 4(3): 303-323.

[113] Mills A K, Hammond T J. Lam M H C, et al. XUV frequency combs via femtosecond enhancement cavities[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45(14): 142001.

[114] Porat G, Heyl C M, Schoun S B, et al. Phase-matched extreme-ultraviolet frequency-comb generation[J]. Nature Photonics, 2018, 12(7): 387-391.

[115] Faisal F H M, Kamiński J Z. Floquet-Bloch theory of high-harmonic generation in periodic structures[J]. Physical Review A, 1997, 56(1): 748-762.

[116] Golde D, Meier T, Koch S W. High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations[J]. Physical Review B, 2008, 77(7): 075330.

[117] Ghimire S, DiChiara A D, Sistrunk E, et al. Observation of high-order harmonic generation in a bulk crystal[J]. Nature Physics, 2011, 7(2): 138-141.

[118] Vampa G, McDonald C R, Orlando G, et al. Theoretical analysis of high-harmonic generation in solids[J]. Physical Review Letters, 2014, 113(7): 073901.

[119] Vampa G, Hammond T J, Thiré N, et al. Linking high harmonics from gases and solids[J]. Nature, 2015, 522(7557): 462-464.

[120] Vampa G, Hammond T J, Thiré N, et al. All-optical reconstruction of crystal band structure[J]. Physical Review Letters, 2015, 115(19): 193603.

[121] Lanin A, Stepanov E A, Fedotov A B, et al. Mapping the electron band structure by intraband high-harmonic generation in solids[J]. Optica, 2017, 4(5): 516-519.

[122] Lakhotia H, Kim H Y, Zhan M, et al. Laser picoscopy of valence electrons in solids[J]. Nature, 2020, 583(7814): 55-59.

魏志义, 钟诗阳, 贺新奎, 赵昆, 滕浩, 王帅, 梁玥瑛, 王佶, 喻苏玉, 陈云琳, 朱江峰. 阿秒光学进展及发展趋势[J]. 中国激光, 2021, 48(5): 0501001. Zhiyi Wei, Shiyang Zhong, Xinkui He, Kun Zhao, Hao Teng, Shuai Wang, Yueying Liang, Ji Wang, Suyu Yu, Yunlin Chen, Jiangfeng Zhu. Progresses and Trends in Attosecond Optics[J]. Chinese Journal of Lasers, 2021, 48(5): 0501001.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!