中国激光, 2021, 48 (5): 0501002, 网络出版: 2021-03-03   

高功率低噪声全固态连续波单频激光器研究进展 下载: 1990次特邀研究论文

Progress on High-Power Low-Noise Continuous-Wave Single-Frequency All-Solid-State Lasers
作者单位
1 山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
2 山西大学极端光学协同创新中心, 山西 太原 030006
引用该论文

张宽收, 卢华东, 李渊骥, 冯晋霞. 高功率低噪声全固态连续波单频激光器研究进展[J]. 中国激光, 2021, 48(5): 0501002.

Kuanshou Zhang, Huadong Lu, Yuanji Li, Jinxia Feng. Progress on High-Power Low-Noise Continuous-Wave Single-Frequency All-Solid-State Lasers[J]. Chinese Journal of Lasers, 2021, 48(5): 0501002.

参考文献

[1] Braunstein S L, van Loock P. Quantum information with continuous variables[J]. Reviews of Modern Physics, 2005, 77(2): 513-577.

[2] Wehner S, Elkouss D. 362(6412): eaam9288[J]. Hanson R. Quantum internet: a vision for the road ahead. Science, 2018.

[3] Flowers J. The route to atomic and quantum standards[J]. Science, 2004, 306(5700): 1324-1330.

[4] Endres M, Bernien H, Keesling A, et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays[J]. Science, 2016, 354(6315): 1024-1027.

[5] Aasil J. Abbott1 B P, Abbott1 R, et al. Advanced LIGO[J]. Classical and Quantum Gravity, 2015, 32(7): 074001.

[6] Mauranyapin N P, Madsen L S, Taylor M A, et al. Evanescent single-molecule biosensing with quantum-limited precision[J]. Nature Photonics, 2017, 11(8): 477-481.

[7] 李宏, 冯晋霞, 万振菊, 等. 高效率外腔倍频产生低噪声连续单频780nm激光[J]. 中国激光, 2014, 41(5): 0502003.

    Li H, Feng J X, Wan Z J, et al. Low noise continuous-wave single frequency 780nm laser high efficiently generated by extra-cavity-enhanced frequency doubling[J]. Chinese Journal of Lasers, 2014, 41(5): 0502003.

[8] Vainio M, Halonen L. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy[J]. Physical Chemistry Chemical Physics, 2016, 18(6): 4266-4294.

[9] 张强, 郭玉彬, 陈嘉轲, 等. 基于相位调制-相干检测的模分复用通信实验[J]. 中国激光, 2020, 47(3): 0306001.

    Zhang Q, Guo Y B, Chen J K, et al. A communication experiment using mode division multiplexing with phase modulation-coherent detection[J]. Chinese Journal of Lasers, 2020, 47(3): 0306001.

[10] 徐俊杰, 卜令兵, 刘继桥, 等. 机载高光谱分辨率激光雷达探测大气气溶胶的研究[J]. 中国激光, 2020, 47(7): 0710003.

    Xu J J, Bu L B, Liu J Q, et al. Airborne high-spectral-resolution lidar for atmospheric aerosol detection[J]. Chinese Journal of Lasers, 2020, 47(7): 0710003.

[11] 章征林, 高磊, 孙阳阳, 等. 分布式光纤传感器应变传递规律研究[J]. 中国激光, 2019, 46(4): 0410001.

    Zhang Z L, Gao L, Sun Y Y, et al. Strain transfer law of distributed optical fiber sensor[J]. Chinese Journal of Lasers, 2019, 46(4): 0410001.

[12] Su X, Zhao Y, Hao S, et al. Experimental preparation of eight-partite cluster state for photonic qumodes[J]. Optics Letters, 2012, 37(24): 5178-5180.

[13] Su X L, Tian C X, Deng X W, et al. Quantum entanglement swapping between two multipartite entangled states[J]. Physical Review Letters, 2016, 117(24): 240503.

[14] Su X L, Hao S H, Deng X W, et al. Gate sequence for continuous variable one-way quantum computation[J]. Nature Communications, 2013, 4: 2828.

[15] Barredo D, de Léséleuc S, Lienhard V, et al. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays[J]. Science, 2016, 354(6315): 1021-1023.

[16] Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102.

[17] Spero R E, Whitcomb S E. The laser interferometer gravitational-wave observatory (LIGO)[J]. Optics and Photonics News, 1995, 6(7): 35-39.

[18] WinkelmannL. Injection-locked high power oscillator for advanced gravitational wave observatories[M]. Göttingen: Cuvillier Verlag, 2012: 22- 23.

[19] Zayhowski J J, Mooradian A. Single-frequency microchip Nd lasers[J]. Optics Letters, 1989, 14(1): 24-26.

[20] Lang R J, Yariv A. An exact formulation of coupled-mode theory for coupled-cavity lasers[J]. IEEE Journal of Quantum Electronics, 1988, 24(1): 66-72.

[21] Nagai H, Kume M, Ohta I, et al. Low-noise operation of a diode-pumped intracavity-doubled Nd∶YAG laser using a Brewster plate[J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 1164-1168.

[22] Kemp A J, Friel G J, Lake T K, et al. Polarization effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal[J]. IEEE Journal of Quantum Electronics, 2000, 36(2): 228-235.

[23] 张宽收, 李瑞宁, 谢常德, 等. 全固体化Nd:YVO4单频绿光激光器[J]. 中国激光, 1994, 21(8): 617-620.

    Zhang K S, Li R N, Xie C D, et al. All-solid-state intracavity frequency doubled Nd∶YVO4 laser of single-frequency operation[J]. Chinese Journal of Lasers, 1994, 21(8): 617-620.

[24] Hao E J, Tan H M, Li T, et al. Single-frequency laser at 473nm by use of twisted-mode technique[J]. Optics Communications, 2007, 270(2): 327-331.

[25] Martin K I, Clarkson W A, Hanna D C. 3 W of single-frequency output at 532nm by intracavity frequency doubling of a diode-bar-pumped Nd: YAG ring laser[J]. Optics Letters, 1996, 21(12): 875-877.

[26] Winkelmann L, Puncken O, Kluzik R, et al. Injection-locked single-frequency laser with an output power of 220 W[J]. Applied Physics B, 2011, 102(3): 529-538.

[27] Drever R W P, Hall J L, Kowalski F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105.

[28] Kwee P, Bogan C, Danzmann K, et al. Stabilized high-power laser system for the gravitational wave detector advanced LIGO[J]. Optics Express, 2012, 20(10): 10617-10634.

[29] Thies F, Bode N N, Oppermann P, et al. Nd∶YVO4 high-power master oscillator power amplifier laser system for second-generation gravitational wave detectors[J]. Optics Letters, 2019, 44(3): 719-722.

[30] Bode N N, Meylahn F, Willke B. Sequential high power laser amplifiers for gravitational wave detection[J]. Optics Express, 2020, 28(20): 29469-29478.

[31] Nunez P M, Wetter N U, Zondy J J, et al. A single-frequency, diode-pumped Nd: YLF laser at 657nm: a frequency and intensity noise comparison with an extended cavity diode laser[J]. Laser Physics, 2013, 23(2): 025801.

[32] Koch P, Ruebel F, Bartschke J, et al. 5. 7 W cw single-frequency laser at 671 nm by single-pass second harmonic generation of a 17. 2 W injection-locked 1342 nm Nd∶YVO4 ring laser using periodically poled MgO∶LiNbO3[J]. Applied Optics, 2015, 54(33): 9954-9959.

[33] Wang L, Ye Q, Gao M W, et al. Stable high-power Er: YAG ceramic single-frequency laser at 1645nm[J]. Optics Express, 2016, 24(13): 14967-14973.

[34] Wang L, Gao C Q, Gao M W, et al. Resonantly pumped monolithic nonplanar Ho: YAG ring laser with high-power single-frequency laser output at 2122nm[J]. Optics Express, 2013, 21(8): 9541-9546.

[35] Dai T Y, Guo S X, Duan X M, et al. High efficiency single - longitudinal - mode resonantly - pumped Ho∶GdTaO4 laser at 2068nm[J]. Optics Express, 2019, 27(23): 34204-34210.

[36] 李萌萌, 杨飞, 赵上龙, 等. 全固态腔内和频单纵模593. 5nm黄光激光器[J]. 中国激光, 2020, 47(3): 0301003.

    Li M M, Yang F, Zhao S L, et al. All solid-state intracavity sum-frequency single-longitudinal-mode 593. 5nm yellow lasers[J]. Chinese Journal of Lasers, 2020, 47(3): 0301003.

[37] IanM. Study of the physics of the power-scaling of end-pumped solid-state laser sources based on Nd∶YVO4[D]. Southampton: University of Southampton, 2003, 50.

[38] Ma Y Y, Li Y J, Feng J X, et al. Influence of energy-transfer upconversion and excited-state absorption on a high power Nd∶YVO4 laser at 1. 34μm[J]. Optics Express, 2018, 26(9): 12106-12120.

[39] Zhuo Z, Li T, Li X M, et al. Investigation of Nd∶YVO4/YVO4 composite crystal and its laser performance pumped by a fiber coupled diode laser[J]. Optics Communications, 2007, 274(1): 176-181.

[40] Li Y J, Feng J X, Li P, et al. 400mW low noise continuous-wave single-frequency Er, Yb∶YAl3(BO3)4 laser at 1. 55μm[J]. Optics Express, 2013, 21(5): 6082-6090.

[41] Liu J, Wang Z, Li H, et al. Stable, 12 W, continuous-wave single-frequency Nd: YVO4 green laser polarized and dual-end pumped at 880nm[J]. Optics Express, 2011, 19(7): 6777-6782.

[42] McDonagh L, Wallenstein R. Low-noise 62 W CW intracavity-doubled TEM00 Nd∶YVO4 green laser pumped at 888nm[J]. Optics Letters, 2007, 32(7): 802-804.

[43] Yao A Y, Hou W, Kong Y P, et al. Double-end-pumped 11-W Nd: YVO4 cw laser at 1342nm[J]. Journal of the Optical Society of America B, 2005, 22(10): 2129.

[44] Zheng Y H, Wang Y J, Xie C D, et al. Single-frequency Nd: YVO4 laser at 671nm with high-output power of 2. 8 W[J]. IEEE Journal of Quantum Electronics, 2012, 48(1): 67-72.

[45] Wang W Z, Lu H D, Su J, et al. Broadband tunable single-frequency Nd: YVO4/LBO green laser with high output power[J]. Applied Optics, 2013, 52(11): 2279-2285.

[46] Martin K I, Clarkson W A, Hanna D C. Self-suppression of axial mode hopping by intracavity second-harmonic generation[J]. Optics Letters, 1997, 22(6): 375-377.

[47] Lu H D, Su J, Zheng Y H, et al. Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers[J]. Optics Letters, 2014, 39(5): 1117-1120.

[48] Zheng Y H, Li F Q, Wang Y J, et al. High-stability single-frequency green laser with a wedge Nd∶YVO4 as a polarizing beam splitter[J]. Optics Communications, 2010, 283(2): 309-312.

[49] Ma Y Y, Li Y J, Feng J X, et al. High-power stable continuous-wave single longitudinal-mode Nd∶YVO4 laser at 1342nm[J]. Optics Express, 2018, 26(2): 1538-1546.

[50] Jin P X, Lu H D, Yin Q W, et al. Expanding continuous tuning range of a CW single-frequency laser by combining an intracavity etalon with a nonlinear loss[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1600505.

[51] Liu Q, Liu J L, Jiao Y C, et al. A stable 22-W low-noise continuous-wave single-frequency Nd∶YVO4 laser at 1. 06μm directly pumped by a laser diode[J]. Chinese Physics Letters, 2012, 29(5): 054205.

[52] Wang Y J, Zheng Y H, Shi Z, et al. High-power single-frequency Nd∶YVO4 green laser by self-compensation of astigmatisms[J]. Laser Physics Letters, 2012, 9(7): 506-510.

[53] 吕百达. 激光光学:光束描述、传输变换与光腔技术物理[M]. 北京: 高等教育出版社, 2003: 392- 393.

    Lü BD. Laser optics: beam characterization, propagation and transformation, resonator technology and physics[M]. Beijing: Higher Education Press, 2003: 392- 393.

[54] 王雅君, 杨文海, 郑耀辉, 等. 抽运波长及Nd 3+掺杂浓度对内腔倍频单频激光器性能的影响[J]. 中国激光, 2013, 40(6): 0602005.

    Wang Y J, Yang W H, Zheng Y H, et al. Influence of pump wavelength and Nd 3+ doped concentration on the performance of intracavity doubling single-frequency lasers[J]. Chinese Journal of Lasers, 2013, 40(6): 0602005.

[55] Wang Y, Yang W, Zhou H, et al. Temperature dependence of the fractional thermal load of Nd∶YVO4 at 1064nm lasing and its influence on laser performance[J]. Optics Express, 2013, 21(15): 18068-18078.

[56] Zheng Y H, Zhou H J, Wang Y J, et al. Suppressing the preferential σ-polarization oscillation in a high power Nd: YVO4 laser with wedge laser crystal[J]. Chinese Physics B, 2013, 22(8): 084207.

[57] 高英豪, 李渊骥, 冯晋霞, 等. 低噪声连续单频532nm/1. 06μm双波长激光器[J]. 中国激光, 2019, 46(4): 0401005.

    Gao Y H, Li Y J, Feng J X, et al. Low noise continuous-wave single-frequency dual-wavelength laser operating at 532nm and 1. 06μm[J]. Chinese Journal of Lasers, 2019, 46(4): 0401005.

[58] Zhang C, Lu H, Yin Q, et al. Continuous-wave single-frequency laser with dual wavelength at 1064 and 532nm[J]. Applied Optics, 2014, 53(28): 6371-6374.

[59] Yin Q, Lu H, Peng K. Investigation of the thermal lens effect of the TGG crystal in high-power frequency-doubled laser with single frequency operation[J]. Optics Express, 2015, 23(4): 4981-4990.

[60] Yin Q, Lu H, Su J, et al. High power single-frequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnet crystal[J]. Optics Letters, 2016, 41(9): 2033-2036.

[61] Guo Y R, Lu H D, Yin Q W, et al. Intra-cavity round-trip loss measurement of all-solid-state single-frequency laser by introducing extra nonlinear loss[J]. Chinese Optics Letters, 2017, 15(2): 021402.

[62] Jin P, Lu H, Su J, et al. Scheme for improving laser stability via feedback control of intracavity nonlinear loss[J]. Applied Optics, 2016, 55(13): 3478-3482.

[63] Guo Y R, Lu H D, Xu M Z, et al. Investigation about the influence of longitudinal-mode structure of the laser on the relative intensity noise properties[J]. Optics Express, 2018, 26(16): 21108-21118.

[64] 郭永瑞, 卢华东, 苏静, 等. 百瓦级全固态连续单频1064nm激光器的研究[J]. 中国激光, 2017, 44(6): 0601007.

    Guo Y R, Lu H D, Su J, et al. Investigation of hundred-watt all-solid-state continuous-wave single-frequency 1064nm laser[J]. Chinese Journal of Lasers, 2017, 44(6): 0601007.

[65] Xu M Z, Guo Y R, Su J, et al. 125 W single-frequency CW Nd: YVO4 laser based on two-stage dual-end-pumped master-oscillator power amplifiers[J]. Laser Physics Letters, 2019, 16(3): 036201.

[66] Guo Y R, Xu M Z, Peng W N, et al. Realization of a 101 W single-frequency continuous wave all-solid-state 1064nm laser by means of mode self-reproduction[J]. Optics Letters, 2018, 43(24): 6017-6020.

[67] Feng J X, Wan Z J, Li Y J, et al. Generation of 8.3dB continuous variable quantum entanglement at a telecommunication wavelength of 1550nm[J]. Laser Physics Letters, 2018, 15(1): 015209.

[68] Buchler B C, Huntington E H, Harb C C, et al. Feedback control of laser intensity noise[J]. Physical Review A, 1998, 57(2): 1286-1294.

[69] Bachor HA, Ralph TC. A guide to experiments in quantum optics[M]. Weinheim: Wiley, 2004: 204- 205.

[70] Zhang T C, Poizat J P, Grelu P, et al. Quantum noise of free-running and externally-stabilized laser diodes[J]. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 1995, 7(4): 601-613.

[71] Lu H, Guo Y, Peng K. Intensity noise manipulation of a single-frequency laser with high output power by intracavity nonlinear loss[J]. Optics Letters, 2015, 40(22): 5196-5199.

[72] Guo Y R, Peng W N, Su J, et al. Influence of the pump scheme on the output power and the intensity noise of a single-frequency continuous-wave laser[J]. Optics Express, 2020, 28(4): 5866-5874.

[73] Guo Y, Lu H, Peng W, et al. Intensity noise suppression of a high-power single-frequency CW laser by controlling the stimulated emission rate[J]. Optics Letters, 2019, 44(24): 6033-6036.

[74] Gao Y H, Li Y J, Feng J X, et al. Stable continuous-wave single-frequency intracavity frequency-doubled laser with intensity noise suppressed in audio frequency region[J]. Chinese Physics B, 2019, 28(9): 094204.

[75] Gao Y H, Feng J X, Li Y J, et al. Generation and measurement of squeezed vacuum states at audio-band frequencies[J]. Applied Sciences, 2019, 9(7): 1272.

[76] Wang Y J, Zheng Y H, Xie C D, et al. High-power low-noise Nd: YAP/LBO laser with dual wavelength outputs[J]. IEEE Journal of Quantum Electronics, 2011, 47(7): 1006-1013.

[77] 杨文海, 王雅君, 李志秀, 等. 小型化、低噪声内腔倍频Nd: YAP/KTP单频激光器[J]. 中国激光, 2014, 41(5): 0502002.

    Yang W H, Wang Y J, Li Z X, et al. Compact and low-noise intracavity frequency-doubled single-frequency Nd: YAP/KTP laser[J]. Chinese Journal of Lasers, 2014, 41(5): 0502002.

[78] Yu J, Qin Y, Yan Z H, et al. Improvement of the intensity noise and frequency stabilization of Nd YAP laser with an ultra-low expansion Fabry-Perot cavity[J]. Optics Express, 2019, 27(3): 3247-3254.

[79] Feng JX, Li YJ, Zhang KS, et al. Linear polarization output performance of Nd: YAG laser at 946nm considering the energy-transfer upconversion[J]. Chinese Physics B, 27( 7): 074211.

[80] Wang Y T, Liu J L, Liu Q, et al. Diode-end-pumped continuous-wave Nd: YAG laser at 946nm of single-frequency operation[J]. Laser Physics, 2010, 20(4): 802-805.

[81] Wang Y T, Liu J L, Liu Q, et al. Stable continuous-wave single-frequency Nd: YAG blue laser at 473nm considering the influence of the energy-transfer upconversion[J]. Optics Express, 2010, 18(12): 12044-12051.

[82] Radziemski L J, Engleman R, Brault J W. Fourier-transform-spectroscopy measurements in the spectra of neutral lithium, 6I and 7I (Li I)[J]. Physics. Review A, 1995, 52(6): 4462-4470.

[83] 杨小平, 王春香, 冯晋霞, 等. 9 W全固态连续单频1. 34μm Nd∶YVO4激光器[J]. 中国激光, 2013, 40(6): 0602019.

    Yang X P, Wang C X, Feng J X, et al. 9 W all-solid-state continuous-wave single-frequency 1. 34μm Nd∶YVO4 laser[J]. Chinese Journal of Lasers, 2013, 40(6): 0602019.

[84] 马亚云, 冯晋霞, 万振菊, 等. 连续变量1. 34μm量子纠缠态光场的实验制备[J]. 物理学报, 2017, 66(24): 244205.

    Ma Y Y, Feng J X, Wan Z J, et al. Continuous variable quantum entanglement at 1. 34μm[J]. Acta Physica Sinica, 2017, 66(24): 244205.

[85] 李渊骥, 焦月春, 冯晋霞, 等. LD端面抽运1. 5μm Er 3+, Yb 3+∶YAl3(BO3)4激光器[J]. 中国激光, 2013, 40(1): 0102007.

    Li Y J, Jiao Y C, Feng J X, et al. A diode-end-pumped Er 3+, Yb 3+∶YAl3(BO3)4 laser at 1. 5μm[J]. Chinese Journal of Lasers, 2013, 40(1): 0102007.

[86] Jin P, Lu H, Wei Y, et al. Single-frequency CW Ti∶sapphire laser with intensity noise manipulation and continuous frequency-tuning[J]. Optics Letters, 2017, 42(1): 143-146.

[87] Sun X J, Wei J, Wang W Z, et al. Realization of a continuous frequency-tuning Ti: sapphire laser with an intracavity locked etalon[J]. Chinese Optics Letters, 2015, 13(7): 071401.

[88] 苏静, 靳丕铦, 卫毅笑, 等. 自动宽调谐的全固态连续单频钛宝石激光器[J]. 中国激光, 2017, 44(7): 0701006.

    Su J, Jin P X, Wei Y X, et al. Automatically and broadly tunable all-solid-state continuous single-frequency Ti: sapphire laser[J]. Chinese Journal of Lasers, 2017, 44(7): 0701006.

[89] Lu H. D, Su J. Xie C D, et al. Experimental investigation about influences of longitudinal-mode structure of pumping source on a Ti: sapphire laser[J]. Optics Express, 2011, 19(2): 1344-1353.

[90] Lu H. D, Su J, Wang M H, et al. Single frequency Ti: sapphire laser with continuous frequency-tuning and low intensity noise by means of the additional intracavity nonlinear loss[J]. Optics Express, 2014, 22(20): 24551-24558.

[91] Wei Y X, Lu H D, Jin P X, et al. Self-injection locked CW single-frequency tunable Ti: sapphire laser[J]. Optics Express, 2017, 25(18): 21379-21387.

[92] Lu H D, Sun X J, Wei J, et al. Intracavity frequency-doubled and single-frequency Ti: sapphire laser with optimal length of the gain medium[J]. Applied Optics, 2015, 54(13): 4262-4266.

[93] Lu H D, Wei J, Wei Y X, et al. Generation of high-power single-frequency 397. 5nm laser with long lifetime and perfect beam quality in an external enhancement-cavity with MgO-doped PPSLT[J]. Optics Express, 2016, 24(21): 23726-23734.

[94] Wu L, Yan Z H, Liu Y H, et al. Experimental generation of tripartite polarization entangled states of bright optical beams[J]. Applied Physics Letters, 2016, 108(16): 161102.

[95] 张连平, 殷国玲, 李凤琴, 等. 900 nm波段的全固态高功率单频可调谐钛宝石激光器[J]. 中国激光, 2017, 44(12): 1201002.

    Zhang L P, Yin G L, Li F Q, et al. All-solid-state tunable Ti: sapphire laser with high-power and single-frequency at 900nm[J]. Chinese Journal of Lasers, 2017, 44(12): 1201002.

[96] Li F Q, Li H J, Lu H D, et al. High-power tunable single-frequency 461nm generation from an intracavity doubled Ti: sapphire laser with PPKTP[J]. Laser Physics, 2016, 26(2): 025802.

[97] Li F Q, Li H J, Lu H D, et al. Realization of a tunable 455. 5nm laser with low intensity noise by intracavity frequency-doubled Ti: sapphire laser[J]. IEEE Journal of Quantum Electronics, 2016, 52(2): 1700106.

[98] Li F Q, Zhao B, Wei J, et al. Continuously tunable single-frequency 455nm blue laser for high-state excitation transition of cesium[J]. Optics Letters, 2019, 44(15): 3785-3788.

张宽收, 卢华东, 李渊骥, 冯晋霞. 高功率低噪声全固态连续波单频激光器研究进展[J]. 中国激光, 2021, 48(5): 0501002. Kuanshou Zhang, Huadong Lu, Yuanji Li, Jinxia Feng. Progress on High-Power Low-Noise Continuous-Wave Single-Frequency All-Solid-State Lasers[J]. Chinese Journal of Lasers, 2021, 48(5): 0501002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!