中国激光, 2021, 48 (5): 0501003, 网络出版: 2021-03-12   

掺镱光纤-固体高功率超短脉冲放大研究进展 下载: 1895次特邀综述

Research Progress of Ytterbium-Doped Fiber-Solid High-Power Ultrashort Pulse Amplification
徐岩 1,2彭志刚 1,2,*程昭晨 1,2石宇航 1,2王贝贝 1,2王璞 1,2,*
作者单位
1 北京工业大学材料与制造学部激光工程研究院, 北京 100124
2 北京工业大学北京激光应用技术研究中心, 北京 100124
引用该论文

徐岩, 彭志刚, 程昭晨, 石宇航, 王贝贝, 王璞. 掺镱光纤-固体高功率超短脉冲放大研究进展[J]. 中国激光, 2021, 48(5): 0501003.

Yan Xu, Zhigang Peng, Zhaochen Cheng, Yuhang Shi, Beibei Wang, Pu Wang. Research Progress of Ytterbium-Doped Fiber-Solid High-Power Ultrashort Pulse Amplification[J]. Chinese Journal of Lasers, 2021, 48(5): 0501003.

参考文献

[1] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221.

[2] Zhou S A, Wise F W, Ouzounov D G. Divided-pulse amplification of ultrashort pulses[J]. Optics Letters, 2007, 32(7): 871-873.

[3] Délen X, Zaouter Y, Martial I, et al. Yb∶YAG single crystal fiber power amplifier for femtosecond sources[J]. Optics Letters, 2013, 38(2): 109-111.

[4] Daniault L, Hanna M, Lombard L, et al. Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Optics Letters, 2011, 36(5): 621-623.

[5] 闫东钰, 刘博文, 宋寰宇, 等. 高功率光纤飞秒激光放大器的研究现状与发展趋势[J]. 中国激光, 2019, 46(5): 0508012.

    Yan D Y, Liu B W, Song H Y, et al. Research status and development trend of high power femtosecond fiber laser amplifiers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508012.

[6] Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086.

[7] Liu B, Liu C, Wang Y, et al. 100 MW peak power picosecond laser based on hybrid end-pumped Nd∶YVO4 and side-pumped Nd∶YAG amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-7.

[8] Chu H W, Qiao W C, Wang X M, et al. Powerful ultrafast hybrid PM Yb∶fiber-Nd∶GdVO4 master oscillator power amplifier[J]. Optics Communications, 2020, 460: 125109.

[9] Agnesi A, Carrá L, Pirzio F, et al. Low repetition rate, hybrid fiber/solid-state, 1064 nm picosecond master oscillator power amplifier laser system[J]. Journal of the Optical Society of America B, 2013, 30(11): 2960-2965.

[10] Nie M M, Liu Q, Ji E C, et al. High peak power hybrid MOPA laser with tunable pulse repetition frequency and pulse duration[J]. Applied Optics, 2017, 56(12): 3457-3461.

[11] 汪勇, 刘斌, 叶志斌, 等. 高峰值功率高光束质量光纤-固体混合放大激光系统[J]. 中国激光, 2018, 45(4): 0401007.

    Wang Y, Liu B, Ye Z B, et al. High peak power and high beam quality fiber-solid hybrid amplification laser system[J]. Chinese Journal of Lasers, 2018, 45(4): 0401007.

[12] Brown D C. Ultrahigh-average-power diode-pumped Nd∶YAG and Yb∶YAG lasers[J]. IEEE Journal of Quantum Electronics, 1997, 33(5): 861-873.

[13] Brown D C. Heat, fluorescence, and stimulated-emission power densities and fractions in Nd∶YAG[J]. IEEE Journal of Quantum Electronics, 1998, 34(3): 560-572.

[14] Chénais S, Druon F, Forget S, et al. On thermal effects in solid-state lasers: the case of ytterbium-doped materials[J]. Progress in Quantum Electronics, 2006, 30(4): 89-153.

[15] Nubbemeyer T, Kaumanns M, Ueffing M, et al. 1 kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 2017, 42(7): 1381-1384.

[16] Russbueldt P, Mans T, Weitenberg J, et al. Compact diode-pumped 1.1 kW Yb∶YAG Innoslab femtosecond amplifier[J]. Optics Letters, 2010, 35(24): 4169-4171.

[17] Dietz T, Dietz T, Jenne M, et al. Ultrafast thin-disk multi-pass amplifier system providing 1.9 kW of average output power and pulse energies in the 10 mJ range at 1 ps of pulse duration for glass-cleaving applications[J]. Optics Express, 2020, 28(8): 11415-11423.

[18] Negel J P, Loescher A, Voss A, et al. Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm[J]. Optics Express, 2015, 23(16): 21064-21077.

[19] Sangla D, Martial I, Aubry N, et al. High power laser operation with crystal fibers[J]. Applied Physics B, 2009, 97(2): 263-273.

[20] 王涛, 张健, 张娜, 等. 单晶光纤制备及单晶光纤激光器研究进展[J]. 激光与光电子学进展, 2019, 56(17): 170611.

    Wang T, Zhang J, Zhang N, et al. Research progress in preparation of single crystal fiber and fiber lasers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170611.

[21] Liu J, Xu J, Wang P. High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers[J]. IEEE Photonics Technology Letters, 2012, 24(7): 539-541.

[22] 谭方舟, 刘江, 孙若愚, 等. 基于多模干涉效应的全正色散被动锁模掺镱光纤激光器[J]. 中国激光, 2013, 40(4): 0402010.

    Tan F Z, Liu J, Sun R Y, et al. All-normal-dispersion passively mode-locked Yb-doped fiber laser with multimode interference effect[J]. Chinese Journal of Lasers, 2013, 40(4): 0402010.

[23] 李辉辉, 刘江, 孙若愚, 等. 掺镱光纤激光器中的色散管理耗散孤子[J]. 中国激光, 2013, 40(B12): s102001.

    Li H H, Liu J, Sun R Y, et al. Dissipative dispersion-managed solitons in Yb-doped fiber laser[J]. Chinese Journal of Lasers, 2013, 40(B12): s102001.

[24] 刘江, 魏汝省, 徐佳, 等. 基于6H-SiC衬底外延石墨烯的被动锁模掺镱光纤激光器[J]. 中国激光, 2011, 38(8): 0802003.

    Liu J, Wei R S, Xu J, et al. Passively mode-locked Yb-doped fiber laser with graphene epitaxially grown on 6H-SiC substrates[J]. Chinese Journal of Lasers, 2011, 38(8): 0802003.

[25] Cheng Z C, Li H H, Shi H X, et al. Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normal-dispersion Yb-doped fiber laser[J]. Optics Express, 2015, 23(6): 7000-7006.

[26] Shi Y H, Cheng Z C, Peng Z G, et al. Mode-locked fiber laser with a nonlinear amplifying loop mirror at different repetition rate varying from 100 kHz to 21 MHz[J]. Proceedings of SPIE, 2020, 11437: 114370L.

[27] Yu M, Yu M, Cheng Z C, et al. Numerical modeling and experimental investigation of ultrafast pulses generation from all-polarization-maintaining dispersion-managed nonlinear polarization evolution Yb-doped fiber laser[J]. Optics Express, 2020, 28(22): 32764-32776.

[28] Elahi P, Yılmaz S, Akçaalan Ö, et al. Doping management for high-power fiber lasers: 100 W, few-picosecond pulse generation from an all-fiber-integrated amplifier[J]. Optics Letters, 2012, 37(15): 3042-3044.

[29] Teh P S, Lewis R J, Alam S U, et al. 200 W diffraction limited, single-polarization, all-fiber picosecond MOPA[J]. Optics Express, 2013, 21(22): 25883-25889.

[30] Yu Z H, Shi W, Dong X Z, et al. 110 W all-fiber picosecond master oscillator power amplifier based on large-core-diameter ytterbium-doped fiber[J]. Applied Optics, 2016, 55(15): 4119-4122.

[31] Bobkov K K, Levchenko A E, Kochergina T A, et al. Generation of picosecond pulses with 150 W of average and 0.92 MW of peak power from an Yb-doped tapered fiber MOPA[J]. Proceedings of SPIE, 2020, 11260: 1126020.

[32] Wan P, Yang L M, Liu J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Optics Express, 2013, 21(24): 29854-29859.

[33] Yu H L, Wang X L, Zhang H W, et al. Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1.06 μm[J]. Journal of Lightwave Technology, 2016, 34(18): 4271-4277.

[34] Yu H L, Zhang P F, Wang X L, et al. High-average-power polarization maintaining all-fiber-integrated nonlinear chirped pulse amplification system delivering sub-400 fs pulses[J]. IEEE Photonics Journal, 2016, 8(2): 1-7.

[35] 牛佳, 刘博文, 宋寰宇, 等. 基于光谱控制与色散优化的飞秒啁啾脉冲放大系统[J]. 中国激光, 2020, 47(1): 0101006.

    Niu J, Liu B W, Song H Y, et al. Femtosecond chirped-pulse amplifier system based on spectrum control and dispersion optimization[J]. Chinese Journal of Lasers, 2020, 47(1): 0101006.

[36] 孙若愚, 金东臣, 曹镱, 等. 百瓦级1030 nm皮秒脉冲掺镱全光纤激光器[J]. 中国激光, 2014, 41(10): 1002004.

    Sun R Y, Jin D C, Cao Y, et al. Hundred-watt-level 1030 nm ytterbium-doped picosecond all-fiber laser[J]. Chinese Journal of Lasers, 2014, 41(10): 1002004.

[37] Hong C, Liu J, Sun R Y, et al. High-power all fiber-integrated linearly polarized picosecond ytterbium-doped master-oscillator power amplifier[J]. Proceedings of SPIE, 2018, 10619: 106190E.

[38] Sun R Y, Jin D C, Tan F Z, et al. High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating[J]. Optics Express, 2016, 24(20): 22806-22812.

[39] 孙若愚, 谭方舟, 金东臣, 等. 基于色散波的1 μm飞秒光纤啁啾脉冲放大系统[J]. 中国激光, 2018, 45(1): 0101001.

    Sun R Y, Tan F Z, Jin D C, et al. 1 μm femtosecond fiber chirped pulse amplification system based on dispersion wave[J]. Chinese Journal of Lasers, 2018, 45(1): 0101001.

[40] 白洋, 邹峰, 王子薇, 等. 3.4 MW峰值功率皮秒光纤激光系统的光谱特性[J]. 中国激光, 2017, 44(5): 0501004.

    Bai Y, Zou F, Wang Z W, et al. Spectral properties of picosecond fiber laser system with 3.4 MW peak power[J]. Chinese Journal of Lasers, 2017, 44(5): 0501004.

[41] Röser F, Rothhardt J, Eidam T, et al. Millijoule pulse energy high repetition rate femtosecond fiber CPA system[J]. Optics Letters, 2007, 32(24): 3495-3497.

[42] Eidam T, Rothhardt J, Stutzki F, et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Optics Express, 2011, 19(1): 255-260.

[43] Lavenu L, Natile M, Guichard F, et al. High-energy few-cycle Yb-doped fiber amplifier source based on a single nonlinear compression stage[J]. Optics Express, 2017, 25(7): 7530-7537.

[44] Yang P L, Hao T, Hu Z Q, et al. Highly stable Yb-fiber laser amplifier of delivering 32-μJ, 153-fs pulses at 1-MHz repetition rate[J]. Applied Physics B, 2018, 124(8): 1-6.

[45] Manchee C P K, Möller J, Miller R J D. Highly stable, 100 W average power from fiber-based ultrafast laser system at 1030 nm based on single-pass photonic-crystal rod amplifier[J]. Optics Communications, 2019, 437: 6-10.

[46] 贺明洋, 李敏, 袁帅, 等. 高功率飞秒自相似光纤激光放大系统[J]. 中国激光, 2020, 47(3): 0308001.

    He M Y, Li M, Yuan S, et al. High-power femtosecond self-similar fiber amplification system[J]. Chinese Journal of Lasers, 2020, 47(3): 0308001.

[47] Chang H, Cheng Z C, Sun R Y, et al. 172-fs, 27-μJ, Yb-doped all-fiber-integrated chirped pulse amplification system based on parabolic evolution by passive spectral amplitude shaping[J]. Optics Express, 2019, 27(23): 34103-34112.

[48] Li H J, Bu X B, Wang P. High-power chirped pulse amplification based on Yb-doped rod-type PCF and nonlinear amplifying loop mirror oscillator[J]. Proceedings of SPIE, 2020, 11437: 114370Q.

[49] Hong K H, Siddiqui A, Moses J, et al. Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb∶YAG amplifier seeded by a fiber chirped-pulse amplification system[J]. Optics Letters, 2008, 33(21): 2473-2475.

[50] Chang C L, Krogen P, Hong K H, et al. High-energy, kHz, picosecond hybrid Yb-doped chirped-pulse amplifier[J]. Optics Express, 2015, 23(8): 10132-10144.

[51] Morrissey F X, Fan T Y, Miller D E, et al. Picosecond kilohertz-class cryogenically cooled multistage Yb-doped chirped pulse amplifier[J]. Optics Letters, 2017, 42(4): 707-710.

[52] Brown D C, Singley J M, Kowalewski K, et al. High sustained average power cw and ultrafast Yb∶YAG near-diffraction-limited cryogenic solid-state laser[J]. Optics Express, 2010, 18(24): 24770-24792.

[53] KawatoS, SugiuraY, KobayashiT. Gain and thermal characteristics of end-pumped thin-rod Yb∶YAG amplifier[C] //Advanced Solid-State Lasers, Washington, D.C.: OSA, 2020: WB4.

[54] Sueda K, Kawato S, Kobayashi T. LD pumped Yb∶YAG regenerative amplifier for high average power short-pulse generation[J]. Laser Physics Letters, 2008, 5(4): 271-275.

[55] Matsubara S, Tanaka M, Takama M, et al. A picosecond thin-rod Yb∶YAG regenerative laser amplifier with the high average power of 20 W[J]. Laser Physics Letters, 2013, 10: 055810.

[56] Délen X, Aubourg A, Deyra L, et al. Single crystal fiber for laser sources[J]. Proceedings of SPIE, 2015, 9342: 934202.

[57] Zaouter Y, Martial I, Aubry N, et al. Direct amplification of ultrashort pulses in μ-pulling-down Yb∶YAG single crystal fibers[J]. Optics Letters, 2011, 36(5): 748-750.

[58] Lesparre F, Gomes J T, Délen X, et al. Yb∶YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique[J]. Optics Letters, 2016, 41(7): 1628-1631.

[59] Kuznetsov I, Mukhin I, Palashov O, et al. Thin-tapered-rod Yb∶YAG laser amplifier[J]. Optics Letters, 2016, 41(22): 5361-5364.

[60] Kuznetsov I, Mukhin I, Palashov O, et al. Thin-rod Yb∶YAG amplifiers for high average and peak power lasers[J]. Optics Letters, 2018, 43(16): 3941-3944.

[61] KuznetsovI. High average and peak power laser based on Yb∶YAG amplifiers of advanced geometries developed in IAP RAS[C] //IEEE 2018 International Conference Laser Optics (ICLO), June 4-8, 2018, Saint Petersburg, Russia. New York: IEEE Press, 2018.

[62] Li F, Yang Z, Lv Z, et al. Hundred micro-joules level high power chirped pulse amplification of femtosecond laser based on single crystal fiber[J]. IEEE Photonics Journal, 2017, 9(6): 1-7.

[63] Wang N N, Wang X L, Hu X H, et al. 41.8 W output power, 200 kHz repetition rate ultra-fast laser based on Yb∶YAG single crystal fiber(SCF)amplifier[J]. Optics & Laser Technology, 2020, 127: 106202.

[64] Li F, Yang Z, Lv Z, et al. Hybrid CPA system comprised by fiber-silicate glass fiber-single crystal fiber with femtosecond laser power more than 90 W at 1 MHz[J]. Optics & Laser Technology, 2020, 129: 106291.

[65] Li F, yang Z, Wang Y S, et al. Hybrid high energy femtosecond laser system based on Yb∶YAG single crystal fiber amplifier[J]. Optik, 2018, 156: 155-160.

[66] Wang N N, Wang N N, Li F, et al. Development of a 67.8 W, 2.5 ps ultrafast chirped-pulse amplification system based on single-crystal fiber amplifiers[J]. Applied Optics, 2020, 59(27): 8106-8110.

[67] Peng Z G, Shi Y H, Bu X B, et al. 21 W, 105 μJ regenerative amplifier based on Yb∶YAG SCF and NALM fiber oscillator[J]. IEEE Photonics Technology Letters, 2020, 32(6): 333-336.

[68] Beirow F, Eckerle M, Graf T, et al. Amplification of radially polarized ultra-short pulsed radiation to average output powers exceeding 250 W in a compact single-stage Yb∶YAG single-crystal fiber amplifier[J]. Applied physics B, 2020, 126(9): 1-10.

[69] Pouysegur J, Guichard F, Zaouter Y, et al. Hybrid high-energy high-power pulse width-tunable picosecond source[J]. Optics Letters, 2015, 40(22): 5184-5187.

[70] Pouysegur J, Weichelt B, Guichard F, et al. Simple Yb∶YAG femtosecond booster amplifier using divided-pulse amplification[J]. Optics Express, 2016, 24(9): 9896-9904.

[71] Rodin AM, ZopelisE. Comparison of Yb∶YAG single crystal fiber with larger aperture CPA pumped at 940 nm and 969 nm[C] //2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), July 31-August 4, 2017, Singapore, Singapore.New York: IEEE Press, 2017: 1- 5.

[72] RodinA, ZopelisE. Optimised configuration for two cascaded double-pass Yb∶YAG chirped pulse amplifier[C] //2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 25-29,2017, Munich, Germany.New York: IEEE Press, 2017.

[73] Veselis L, Bartulevicius T, Madeikis K, et al. Compact 20 W femtosecond laser system based on fiber laser seeder, Yb∶YAG rod amplifier and chirped volume Bragg grating compressor[J]. Optics Express, 2018, 26(24): 31873-31879.

[74] Veselis L, Bartulevicius T, Madeikis K, et al. Generation of 40 W, 400 fs pulses at 1 MHz repetition rate from efficient, room temperature Yb∶YAG double-pass amplifier seeded by fiber CPA system[J]. Proceedings of SPIE, 2020, 11259: 1125925.

[75] Obronov I V, Demkin A S, Myasnikov D V. Solid-state Yb∶YAG amplifier pumped by a single-mode laser at 920 nm[J]. Quantum Electronics, 2018, 48(3): 212-214.

[76] Bu X B, Xu Y, Peng Z G, et al. 100 W, 7 ps hybrid Yb-fiber and Yb∶YAG thin-rod MOPA laser[J]. Proceedings of SPIE, 2020, 11455: 114553T.

[77] Beach R J, Honea E C, Sutton S B, et al. High-average-power diode-pumped Yb∶YAG lasers[J]. Proceedings of SPIE, 2000, 3889: 246-260.

徐岩, 彭志刚, 程昭晨, 石宇航, 王贝贝, 王璞. 掺镱光纤-固体高功率超短脉冲放大研究进展[J]. 中国激光, 2021, 48(5): 0501003. Yan Xu, Zhigang Peng, Zhaochen Cheng, Yuhang Shi, Beibei Wang, Pu Wang. Research Progress of Ytterbium-Doped Fiber-Solid High-Power Ultrashort Pulse Amplification[J]. Chinese Journal of Lasers, 2021, 48(5): 0501003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!